两道模板题,思路与算法却是相当经典。

先说最开始做的行列式求值,题目大致为给一个10*10的行列式,求其值

具体思路(一开始看到题我的思路):

1.暴算,把每种可能组合试一遍,求逆序数,做相应加减运算,一看就知道不是正解。

2.暴算2.0 用递归和代数余子式计算,但同样需计算逆序数。

3.一看就是知道是正解高斯消元,将行列式消为上三角,将对角线相乘。

看看代码:

#include<bits/stdc++.h>      //喜闻乐见的万用头
using namespace std;
int n;
double a[][]; //因需处理小数,开double
int t=;
bool no;
double tim=; //储存约去系数int main(){
cin>>n;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++) scanf("%lf",&a[i][j]); //由于数据较少(10*10),不用快读
}
for(int i=;i<=n;i++){
if(!a[i][i]){ //判断当前处理数据是否为0,point
t=i;
while(!a[t][i]&&t<=n) t++;
if(t==n+){no=; continue;} //筛选首项不为0的行,进行交换,别忘记*=-1,最少wa4个
for(int j=;j<=n;j++) swap(a[i][j],a[t][j]);
tim*=-;
}
double x=a[i][i]; //将该行非0首项(之前的运算保证其不为0且为第一的非0数)
for(int j=i;j<=n;j++) a[i][j]/=x; //将每个a[i][i]除为1
tim*=x; //将消去系数累乘保存
for(int j=i+;j<=n;j++){
x=a[j][i];
for(int k=;k<=n;k++) a[j][k]-=x*a[i][k]; //将每行首项消为0,其余数做相同运算
}
/*for(int j=1;j<=n;j++){ //输出看看行列式消得对不对
for(int k=1;k<=n;k++) cout<<a[j][k]<<" ";
cout<<endl;
}*/
}
printf("%0.0lf",tim*a[n][n]); //输出系数与最后一项的乘积,取整
return ;
}
p.s.:“no”好像在这里没有用,不知为啥就写上了。。。
//以下是例题没有的特殊数据
/*8
5 5 10 9 5 9 10 4
3 3 6 1 4 6 7 10
1 1 2 10 8 9 8 7
6 2 3 4 8 3 6 9
1 2 6 3 2 7 8 9
9 5 4 5 1 7 3 10
2 4 6 10 10 5 7 8
4 5 6 10 4 7 5 2*/

point:(以后把需要较大量文字叙述的重点用文下注释解释)

如果a[i][i]为0,则在将要进行的化简运算中会出现  n/0 情况,

对于此类数字输出为“nan”(同学说这是暗示这道题难。。。)“not a number”

而对于此处出现的0,根据高斯消元的相关理论应该往下换,毕竟要组成下三角需把0“沉下去”,所以与下面换行。

p.s.:这道题给了我一点启示:

当初同学最快做出来得了11分,我初次尝试得了64分,这给了我做出来的动力,非常大的动力

我便梦想总有一天我要在全56级初学者之前a掉它,自此,我在家打开的窗口不再是虐杀原形,而是c++,为此,我改变了3次算法,代码重构好多次,提交。。。10几次是有了吧,乘积由64提到95,再提到96,最后查出致命错误终是a了,并达成了梦想。。。不总结了,只是希望以后万念俱灰的自己看到这个能。。。cheer下吧

高斯消元与行列式求值 part1的更多相关文章

  1. [置顶] hdu 4418 高斯消元解方程求期望

    题意:  一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...

  2. 【BZOJ-4031】小z的房间 Matrix-Tree定理 + 高斯消元解行列式

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 937  Solved: 456[Submit][Statu ...

  3. 6.10 省选模拟赛 小C的利是 高斯消元 矩阵行列式

    LINK:小C的利是 想起来把这道题的题解写了 .一个常识:利是在广东那边叫做红包. 关于行列式的题目 不过我不太会23333..口胡还是可以的. 容易想到10分的状压.不过没什么意思. 仔细观察要求 ...

  4. POJ 1681 Painter's Problem (高斯消元 枚举自由变元求最小的步数)

    题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要 ...

  5. POJ 1753 Flip Game (高斯消元 枚举自由变元求最小步数)

    题目链接 题意:4*4的黑白棋,求把棋全变白或者全变黑的最小步数. 分析:以前用状态压缩做过. 和上题差不多,唯一的不同是这个终态是黑棋或者白棋, 但是只需要把给的初态做不同的两次处理就行了. 感觉现 ...

  6. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

  7. BZOJ3270:博物馆(高斯消元)

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

  8. LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元

    问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...

  9. Luogu P2447 [SDOI2010]外星千足虫 高斯消元

    链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...

随机推荐

  1. Js-函数式编程

    前言 JavaScript是一门多范式语言,即可使用OOP(面向对象),也可以使用FP(函数式),由于笔者最近在学习React相关的技术栈,想进一步深入了解其思想,所以学习了一些FP相关的知识点,本文 ...

  2. EF获取多个数据集以及MySQL分页数据查询优化

    背景:MySQL分页查询语句为 ,10; 一般页面还会获取总条数,这时候还需要一条查询总条数语句 , 这样数据库需要执行两次查询操作.MySQL提供了SQL_CALC_FOUND_ROWS追踪总条数的 ...

  3. 筛选出和该元素相交的元素之BoundingBoxIntersectsFilter

    //假设元素为ee BoundingBoxXYZ box = ee.get_BoundingBox(doc.ActiveView); //创建outline,通过boundingboxintersec ...

  4. 折腾Java设计模式之迭代器模式

    迭代器模式 Provide a way to access the elements of an aggregate object sequentially without exposing its ...

  5. vue中使用provide和inject刷新当前路由(页面)

    1.场景 在处理列表时,常常有删除一条数据或者新增数据之后需要重新刷新当前页面的需求. 2.遇到的问题 1. 用vue-router重新路由到当前页面,页面是不进行刷新的 2.采用window.rel ...

  6. Apache2配置多域名站点及支持https

    0x00 预备条件 申请SSL证书 建立对应站点目录 开放443端口 0x01 配置sites-available文件 执行 vi /etc/apache2/sites-available/zecoc ...

  7. 安装odoo小程序商城模块报错 KeyError: u'oejia_weshop'

    错误截图如下 检查模块目录名是否不是 oejia_weshop,比如 oejia_weshop-master,注意odoo的模块名不能随便更改,odoo小程序商城模块目录名必须是oejia_wesho ...

  8. android 权限库EasyPermissions

    文章链接:https://mp.weixin.qq.com/s/H63Sn03xV0JoINXB4SWWKA 众所周知,在android 6.0之后,如果应用程序需要危险权限,则用户必须明确向应用授予 ...

  9. Android视频录制从不入门到入门系列教程(一)————简介

    一.WHY Android SDK提供了MediaRecorder帮助开发者进行视频的录制,不过这个类很鸡肋,实际项目中应该很少用到它,最大的原因我觉得莫过于其输出的视频分辨率太有限了,满足不了项目的 ...

  10. 从0开始的Python学习016异常

    简介 当你的程序不能正常运行的时候,Python会在控制台打印一段提醒,告诉你一个错误,这个错误就是异常. 错误 我在控制台写了一段无效的代码,将print()的括号去掉,在执行这条语句的时候,系统提 ...