[Codeforces 940E]Cashback
Description
给你两个整数 \(n,c\) ,以及一个数列 \(A\) ,让你将序列分为许多段。对于每一段,他的价值为序列内除了最小的 \(\left\lfloor\frac{lenth}{c}\right\rfloor\) 个元素以外的其他所有元素和, \(lenth\) 为该段的长度。最小化这个价值和。
\(1\leq n,c\leq 100000,1\leq A_i\leq 10^9\)
Solution
一个由贪心得出的结论是整个序列只要分为若干个长度为 \(c\) 的段和若干个长度为 \(1\) 的段即可。
既然要最小化价值,相当于删去的数要尽可能大。
首先分一段长度为 \(c+x,x<c\) 的段,不如分为一段为 \(c\) , \(x\) 段长度为 \(1\) 。因为无论哪种分法都只能删去一个数,但第二种考虑的范围更广一些。
其次分一段长度为 \(2c\) 的段,不如分 \(2\) 段长度为 \(c\) 的段。假设 \(2c\) 段内的最小值和次小值的位置均在前半段内;若我用第二种方法分就一定能够更优。
由此,我们令 \(f_i\) 为转移到 \(i\) 这个位置时之前的最小价值和,转移的时候只要考虑长度分为 \(1\) 和 \(c\) 的情况。对于要删去最小值,用 \(st\) 表来实现查找最值就可以了。
复杂度为 \(O(n~log_2n)\) ,瓶颈在预处理 \(st\) 表,转移是 \(O(n)\) 的。
Code
//It is made by Awson on 2018.2.25
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e5;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, c, a[N+5], st[N+5][20], lim, limc, bin[25];
LL f[N+5], sum[N+5];
int query(int l, int r) {return Min(st[l][limc], st[r-bin[limc]+1][limc]); }
void work() {
read(n), read(c); lim = log(n)/log(2), limc = log(c)/log(2);
bin[0] = 1; for (int i = 1; i <= 20; i++) bin[i] = bin[i-1]<<1;
for (int i = 1; i <= n; i++) read(a[i]), st[i][0] = a[i];
for (int i = 1; i <= n; i++) sum[i] = sum[i-1]+a[i];
for (int t = 1; t <= lim; t++) for (int i = 1; i+bin[t]-1 <= n; i++) st[i][t] = Min(st[i][t-1], st[i+bin[t-1]][t-1]);
for (int i = 1; i <= n; i++) {
f[i] = f[i-1]+a[i];
if (i >= c) f[i] = Min(f[i-c]+sum[i]-sum[i-c]-query(i-c+1, i), f[i]);
}
writeln(f[n]);
}
int main() {
work(); return 0;
}
[Codeforces 940E]Cashback的更多相关文章
- CodeForces - 940E - Cashback +贪心+DP
传送门:CodeForces - 940E - Cashback 题意:在一个长度为n的数组中,可以分出长度为 k 连续的多个数组b(每个数组 b 的 k 可不相同),然后,可以对每个数组 b 进行删 ...
- 2018.12.29 codeforces 940E. Cashback(线性dp)
传送门 题意:给出一个nnn个数的序列,要求将序列分成若干段,对于一段长度为kkk的自动删去最小的⌊kc⌋\left \lfloor \frac{k}{c} \right \rfloor⌊ck⌋个数 ...
- CodeForces 940E
题意略. 这个题目我开始题意理解得有点问题.本题的实质是在这个数列中选择一些数字,使得选出的这些数字之和最大,用dp来解. 我们先要明确:当我选择数列长度为2 * c时,不如把这个长度为2 * c的劈 ...
- Codeforces Round #466 (Div. 2) Solution
从这里开始 题目列表 小结 Problem A Points on the line Problem B Our Tanya is Crying Out Loud Problem C Phone Nu ...
- DP刷题记录
目录 dp刷题记录 codeforces 706C codeforces 940E BZOJ3997 POJ2279 GYM102082B GYM102082D codeforces132C L3-0 ...
- Codeforces Round #466 (Div. 2) E. Cashback
Codeforces Round #466 (Div. 2) E. Cashback(dp + 贪心) 题意: 给一个长度为\(n\)的序列\(a_i\),给出一个整数\(c\) 定义序列中一段长度为 ...
- Codeforces 940 E.Cashback (单调队列,dp)
Codeforces 940 E.Cashback 题意:一组数,要分为若干个区间,每个区间长度为ki(1<=ki<=n),并且对于每个区间删去前ki/c(向下取整)个小的数(即对区间升序 ...
- Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F
Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...
- 【Codeforces Round #466】E. Cashback DP+ST表
题意 给定$n$个数,将其划分成若干个连续的子序列,求最小价值,数组价值定义为,数组和减去$\lfloor \frac{k}{c} \rfloor$,$k$为数组长度,$c$为给定数 可以列得朴素方程 ...
随机推荐
- 使用idea新建jsp
使用idea解决新建jsp文件而找不到jsp文件模版的新建选项,这样每次创建一个新的jsp文件岂不是很耗时间? 解决办法: 就是要让idea知道你需要在这个目录下创建jsp文件 左上角,file中点击 ...
- Redis——常见面试题
一.memcached与redis的区别? 1.存储方式不同.memcached把数据全部存在内存之中,断电之后会挂掉,而redis虽然也用到了内存,但是会有部分数据存在硬盘中,保证数据持久性. 2. ...
- 201421123042 《Java程序设计》第3周学习总结
#Week03-面向对象入门 1. 本周学习总结 1.1写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 本周学习关键词:类,对象,封装,关键词:final,this,statis. 1 ...
- Hibernate之Hibernate的下载与安装
Hibernate用法十分简单,当我们在Java项目中引入Hibernate框架之后,就能以面向对象的方式来操作关系数据库了. 下载: 登陆Hibernate官网,下载Hibernate压缩包,win ...
- c# BinaryWriter 和 BinaryReader
string path = @"C:\Users\Administrator\Desktop\1.txt"; using (FileStream ws = new FileStre ...
- 2-51单片机WIFI学习(开发板测试远程通信详细介绍)
前一篇链接(最后有APP安装包下载地址) http://www.cnblogs.com/yangfengwu/p/8720148.html 由于自己别的贴片的板子还没到,所以用自己的8266最小系统板 ...
- Python内置函数(17)——chr
英文文档: chr(i) Return the string representing a character whose Unicode code point is the integer i. F ...
- html5shiv.js和respond.min.js的作用
html5shiv:解决ie9以下浏览器对html5新增标签的不识别,并导致CSS不起作用的问题. respond.min:让不支持css3 Media Query的浏览器包括IE6-IE8等其他浏览 ...
- springmvc4开发rest
Spring MVC 4 RESTFul Web Services CRUD Example+RestTemplate Created on: August 11, 2015 | Last upd ...
- Linux实用的网站
ABCDOCKER网站 https://www.abcdocker.com/ 徐亮伟网站 http://www.xuliangwei.com/ 安装centos物理服务 ...