题目描述

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。

我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

输入输出格式

输入格式:

文件的第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。

输出格式:

只需要输出一个整数,即可能的最小冲突数。

输入输出样例

输入样例#1:

3 3
1 0 0
1 2
1 3
3 2

输出样例#1:

1

说明

2≤n≤300,1≤m≤n(n-1)/2。

题解

最小割
S表示投0,T表示投1
若i偏爱投0,则i向T连一条容量为1的边,表示会多一个冲突
若i偏爱投1,则S向i连一条容量为1的边,同样表示会多一个冲突,
i,j为朋友,i,j之间互相连一条容量为1的边,则表示i,j投不一样的
跑一遍最大流(就是最小割)即可

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(310), __(4e5 + 10), INF(2147483647); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, w[__], fst[_], nxt[__], to[__], cnt;
int S, T, lev[_], cur[_], max_flow;
queue <int> Q; IL void Add(RG int u, RG int v, RG int f){ w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++; } IL int Dfs(RG int u, RG int maxf){
if(u == T) return maxf;
RG int ret = 0;
for(RG int &e = cur[u]; e != -1; e = nxt[e]){
if(lev[to[e]] != lev[u] + 1 || !w[e]) continue;
RG int f = Dfs(to[e], min(w[e], maxf - ret));
ret += f; w[e ^ 1] += f; w[e] -= f;
if(ret == maxf) break;
}
return ret;
} IL bool Bfs(){
Fill(lev, 0); lev[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(lev[to[e]] || !w[e]) continue;
lev[to[e]] = lev[u] + 1;
Q.push(to[e]);
}
}
return lev[T];
} int main(RG int argc, RG char* argv[]){
n = Read(); m = Read(); Fill(fst, -1); T = n + 1;
for(RG int i = 1, a; i <= n; i++){
a = Read();
if(a) Add(S, i, 1), Add(i, S, 0);
else Add(i, T, 1), Add(T, i, 0);
}
for(RG int i = 1, a, b; i <= m; i++){
a = Read(), b = Read();
Add(a, b, 1); Add(b, a, 0);
Add(b, a, 1); Add(a, b, 0);
}
while(Bfs()) Copy(cur, fst), max_flow += Dfs(S, INF);
printf("%d\n", max_flow);
return 0;
}

[Shoi2007]Vote 善意的投票的更多相关文章

  1. bzoj1934: [Shoi2007]Vote 善意的投票

    最大流..建图方式都是玄学啊.. //Dinic是O(n2m)的. #include<cstdio> #include<cstring> #include<cctype& ...

  2. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  3. 1934: [Shoi2007]Vote 善意的投票

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1174  Solved: 723[Submit][S ...

  4. BZOJ_1934_[Shoi2007]Vote 善意的投票

    BZOJ_1934_[Shoi2007]Vote 善意的投票 Description 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然 ...

  5. 【BZOJ2768】[JLOI2010]冠军调查/【BZOJ1934】[Shoi2007]Vote 善意的投票 最小割

    [BZOJ2768][JLOI2010]冠军调查 Description 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教 ...

  6. bzoj1934: [Shoi2007]Vote 善意的投票(显然最小割)

    1934: [Shoi2007]Vote 善意的投票 题目:传送门 题解: 明显的不能再明显的最小割... st连同意的,不同意的连ed 朋友之间两两连边(即双向边) 流量都为1... 为啥: 一个人 ...

  7. [bzoj1934/2768][Shoi2007]Vote 善意的投票_最小割

    Vote 善意的投票 bzoj-1934 Shoi-2007 题目大意:题目链接. 注释:略. 想法: 这是最小割的一个比较基本的模型. 我们将所有当前同意的小朋友连向源点,边权为1.不容易的连向汇点 ...

  8. 最小投票BZOJ 1934([Shoi2007]Vote 善意的投票-最小割)

    上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.今天在这里和大家一起学习一下最小投票 1934: [Shoi2007]Vote 好心的投票 Time Limit: 1 Sec Memory L ...

  9. 【BZOJ】1934: [Shoi2007]Vote 善意的投票(网络流/-二分图匹配)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1934 一开始我想到了这是求最小割,但是我认为这题二分图可做,将1的放在左边,0的放在右边,然后朋友连 ...

  10. 1934: [Shoi2007]Vote 善意的投票 - BZOJ

    Description幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以 ...

随机推荐

  1. Spring Task定时任务Scheduled

    Spring的任务调度,采用注解的形式 Spring中@Scheduled的用法. spring的配置文件如下,先扫描到任务的类,打开spirng任务的标签 <beans xmlns=" ...

  2. Nginx与Tomcat/PHP架构优化的技术分享

    PHP性能优化 一般我们是在/usr/local/php5/etc/php-fpm.conf这个文件里面进行相应的配置. 1)       如果设置成static,php-fpm进程数自始至终都是pm ...

  3. centos7使用docker部署gitlab-ce-zh应用

    1.国内拉取镜像比较慢,所以这里采用DaoCloud源. # curl -sSL https://get.daocloud.io/daotools/set_mirror.sh | sh -s http ...

  4. 区间DP的四边形不等式优化

    今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:

  5. 利用while语句,条件为输入的字符不为'\n'.

    题目:输入一行字符,分别统计出其中英文字母.空格.数字和其它字符的个数. 1.程序分析:利用while语句,条件为输入的字符不为'\n'. 一个很简单的问题,其实换种方式就能完成,但是我就想怎么着才能 ...

  6. mysql有多条记录的单个字段想存为一个字段显示的方法

    SELECT po.id,(SELECT GROUP_CONCAT(mr.member_type) as memberTypeList FROM prod_offer_member_rel mr WH ...

  7. Java经典编程题50道之四

    将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. public class Example04 {    public static void main(String[] args ...

  8. Entity Framework——记录执行的命令信息

    有两种方法可以记录执行的SQl语句: 使用DbContext.Database.Log属性 实现IDbCommandInterceptor接口 一 使用DbContext.Database.Log属性 ...

  9. CentOS常用命令搜集

    centos是32或者64位:getconf LONG_BIT

  10. 老男孩Python全栈开发(92天全)视频教程 自学笔记06

    day6课程内容: tuple(元祖) 创建元祖: tup0=() #没有元素的一个元祖 tup1=(20,)#只有一个元素的元祖 元祖可读,不可修改 Dictionary(字典)#Python里唯一 ...