1087: [SCOI2005]互不侵犯King
1087: [SCOI2005]互不侵犯King
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4276 Solved: 2471
[Submit][Status][Discuss]
Description
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
方案数。
Sample Input
Sample Output
HINT
Source
/*
* @Author: LyuC
* @Date: 2017-09-03 21:24:43
* @Last Modified by: LyuC
* @Last Modified time: 2017-09-04 21:55:56
*/ /*
题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。 思路:类似八皇后问题,k>n的情况方案数为0,然后剩下的搜索解决 错误:这个和八皇后问题不一样,king只能攻击相邻一格,状压DP dp[i][j][k]表示第i行,j状态,已经按放k个棋子的状态 状态转移:dp[i][j][cnt=从j状态中的棋子数枚举到需要放的总的棋子数]+=
dp[i-1][上一行能满足下一行是j状态的状态][cnt-j状态的棋子数] 总的来说动态规划就是抽象出来状态,就很简单了
*/
#include <bits/stdc++.h> #define MAXN 15
#define MAXT 1024
#define MAXK 105
#define LL long long using namespace std; LL n,k;
LL dp[MAXN][MAXT][MAXK];//dp[i][j][k]表示第i行,第j种状态时,已经放下了k个棋子的方案数
LL tol;
LL cnt;
LL res; bool ok(LL x,LL y){//判断上行的状态是否满足条件
for(LL i=;i<n;i++){
if( (x&(<<i)) == ) continue; if(i==){
if( ( y&( <<i ) ) != || ( y&( <<(i+) ) ) !=)
return false;
}else if(i==n-){
if( ( y&( <<i ) ) != || ( y&( <<(i-) ) ) !=)
return false;
}else{
if( ( y&( <<(i-) ) ) != || ( y&( <<(i+) ) ) != || ( y&( <<i ) ) !=)
return false;
}
}
return true;
} LL judge(LL x){//判断这个状态是不是合格的
LL cur=;
for(LL i=;i<n;i++){
if( ( x&(<<i) ) !=){
if(i==){
if( ( x&( << (i+) ) )!=){
return -;
}
}else if(i==n-){
if( ( x&(<<(i+)) )!= || ( x&(<<(i-)) )!= ){
return -;
}
}else{
if( ( x&(<<(i-)) )!=){
return -;
}
}
cur++;
}
}
return cur;
} inline void init(){
memset(dp,,sizeof dp);
res=;
} int main(){
// freopen("in.txt","r",stdin);
init();
scanf("%lld%lld",&n,&k); tol=(<<n); for(LL i=;i<tol;i++){//初始化状态
cnt=judge(i);
if(cnt!=-){
dp[][i][cnt]=;
}
} for(LL i=;i<n;i++){//从第二行开始递推状态
for(LL j=;j<tol;j++){//枚举当前行的状态
cnt=judge(j);
if(cnt==-) continue;
for(LL l=;l<tol;l++){//枚举上一行的状态
if(ok(j,l)==false) continue;
for(LL d=cnt;d<=k;d++){
dp[i][j][d]+=dp[i-][l][d-cnt];
}
}
}
} for(LL i=;i<tol;i++){
res+=dp[n-][i][k];
}
printf("%lld\n",res);
return ;
}
1087: [SCOI2005]互不侵犯King的更多相关文章
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- bzoj 1087 [SCOI2005]互不侵犯King 状态压缩dp
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Descripti ...
- 【BZOJ】1087: [SCOI2005]互不侵犯King(状压dp)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1087 状压dp是第一次写啊,我也是才学TAT.状压dp一般都用一个值表示集合作为dp的一个状 ...
- bzoj[1087][SCOI2005]互不侵犯King
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...
- 1087. [SCOI2005]互不侵犯King【状压DP】
Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...
- 【BZOJ】1087: [SCOI2005]互不侵犯King
[算法]状态压缩型DP [题解]http://www.cnblogs.com/xtx1999/p/4620227.html (orz) https://www.cnblogs.com/zbtrs/p/ ...
- bzoj 1087: [SCOI2005]互不侵犯King【状压dp】
显然是状压,设f[i][j][k]为1到i行选j个king,并且第i行状态为k的方案数,判断是否可行然后枚举转移即可 先把可行状态预处理出来会变快 #include<iostream> # ...
- BZOJ 1087 [SCOI2005]互不侵犯King(状压DP)
题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.n<=9 思路:状压dp,dp[i][ ...
- BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP
[题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...
随机推荐
- Java开发中遇到的问题
head丢失 html的dtd不对 Integer数据类型 使用==比较 这个肯定错(事后才知道) sql语句处理分组的时候,在本地服务使用没问题,在服务器上出现sql异常 group by语句规范, ...
- 《MATLAB从入门到放弃》打通 “矩阵” 障碍
目录: » 矩阵的生成与大小 > 简单矩阵的生成 > 随机矩阵的生成 > 矩阵的大小 » 矩阵的索引与访问 » 矩阵的拼接与裁剪 > 矩阵的拼接 &g ...
- oracle11g 体系结构详解
1.oracle内存由SGA+PGA所构成 2.oracle数据库体系结构数据库的体系结构是指数据库的组成.工作过程与原理,以及数据在数据库中的组织与管理机制. oracle工作原理: 1).在数据库 ...
- 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因
转自:彬彬有礼. 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因 http://blog.csdn.net/jbb0523/article/details/40268943 题目: ...
- 我的第一个python web开发框架(2)——一个简单的小外包
第一部分说明 第一部分大概有20来章,主要讲的是一些开发常识.开发前中后期准备内容.开发环境与服务器部署环境安装设置.python基础框架结构与功能等内容,代码会比较简单. 本系列会以故事的方式,向大 ...
- 编码格式简介:ASCII码、ANSI、GBK、GB2312、GB18030和Unicode、UTF-8,BOM头
编码格式简介:ASCII码.ANSI.GBK.GB2312.GB18030和Unicode.UTF-8,BOM头 二进制: 只有0和1. 十进制.十六进制.八进制: 计算机其实挺笨的,它只认识0101 ...
- Keyboard Row
Given a List of words, return the words that can be typed using letters of alphabet on only one row' ...
- H264 NAL解析
NAL全称Network Abstract Layer,即网络抽象层.在H.264/AVC视频编码标准中,整个系统框架被分为了两个层面:视频编码层面(VCL)和网络抽象层面(NAL).其中,前者负责有 ...
- Jquery实现弹出选择框选择后返回,支持多级分类
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- ELK日志收集分析系统配置
ELK是日志收益与分析的利器. 1.elasticsearch集群搭建 略 2.logstash日志收集 我这里的实现分如下2步,中间用redis队列做缓冲,可以有效的避免es压力过大: 1.n个ag ...