noip模拟21
开题发现这场考过,定睛一看,发现是省选前最后一场,没改过呀……但是还是讲武德的赛时没提交
A. Median
神奇之处在于 \(1e7\) 个质数居然能线性筛出来~
那么 \(S2\) 可以直接筛出来
接着就是求一个值域 \(2*10^7\) 的数列的固定区间动态中位数
首先各种 \(log\) 算法很好想但是过不了
必须是线性
如果排不了序很难受,可以用桶排来实现
由于数据等同于随机,那么每次暴力移动指针期望复杂度很低,直接暴力扫即可
但是写起来非常难写……
对于 \(k\) 为偶数时考虑维护两个指针,对应两个中位数,并维护出小于等于两个指针的值的个数,如果有一边大于 \(k/2\) 那么移动即可
代码实现
#include<bits/stdc++.h>
using namespace std;
const int MAXN=180000000;
const int MAX=2e7;
const int maxn=1e7+15;
int vis[MAXN+10],pri[maxn],tot,n,k,w,s[maxn],a[maxn],cnt[maxn],cnt1,cnt2,tp1,tp2,sum;
long long ans;
void pre(){
for(int i=2;i<=MAXN;i++){
if(!vis[i]){
vis[i]=i;
pri[++tot]=i;
}
for(int j=1;j<=tot;j++){
if(1ll*pri[j]*i>MAXN||pri[j]>vis[i])break;
vis[pri[j]*i]=pri[j];
}
}
return ;
}
int main(){
// freopen("shuju.in","r",stdin);
// freopen("my.out","w",stdout);
pre();
cin>>n>>k>>w;
for(int i=1;i<=n;i++){
a[i]=1ll*pri[i]*i%w;
s[i]=a[i]+a[i/10+1];
// cout<<s[i]<<" ";
}
// cout<<endl;
for(int i=1;i<=k;i++){
cnt[s[i]]++;
}
if(k&1){
for(int i=1;i<=MAX;i++){
sum+=cnt[i];
if(sum>=k/2+1){
if(k&1){
cnt1=sum-cnt[i];
cnt2=k-sum;
tp1=tp2=i;
}
break;
}
if(cnt[i])tp1=i;
}
ans+=tp1+tp2;
int num=k/2;
for(int i=1;i<=n-k;i++){
int last=s[i];
int now=s[i+k];
cnt[last]--;
cnt[now]++;
cnt1+=-(last<tp1)+(now<tp1);
cnt2+=-(last>tp1)+(now>tp1);
while(cnt1>num){
cnt2+=cnt[tp1];
tp1--;
cnt1-=cnt[tp1];
}
while(cnt2>num){
cnt1+=cnt[tp1];
tp1++;
cnt2-=cnt[tp1];
}
ans+=tp1*2;
// cout<<tp1<<endl;
}
}
else{
int num=k/2;
tp1=tp2=-1;
for(int i=k;i<=n;i++){
if(i!=k)cnt[s[i]]++;
if(s[i]<=tp1)cnt1++;
if(s[i]<=tp2)cnt2++;
if(i>k){
cnt[s[i-k]]--;
if(s[i-k]<=tp1)cnt1--;
if(s[i-k]<=tp2)cnt2--;
}
while(cnt1<num)cnt1+=cnt[++tp1];
while(cnt2<num+1)cnt2+=cnt[++tp2];
while(cnt1>=num+cnt[tp1])cnt1-=cnt[tp1--];
while(cnt2>=num+1+cnt[tp2])cnt2-=cnt[tp2--];
ans+=tp1+tp2;
}
}
if(ans&1)printf("%lld.5",ans/2);
else printf("%lld.0",ans/2);
return 0;
}
B. Game
首先题意理解清楚了随便打个 \(log\) 算法比较轻松,但是这题还是得 \(O(n)\) 过
相当于维护一个数集,支持加数、取最大值操作,这个还用桶排实现即可
C. Park
神奇的 \(dp\) 题
首先发现作为起点是独特的,贡献为周围点权和,其他地方都需要减去父亲节点的权值
那么需要区分起点和终点,可以设 \(f[u][i]\) 表示以 \(u\) 为根的子树里从某个点为起点到点 \(u\) 的路径撒了 \(i\) 次的最大收获
\(g[u][i]\) 表示从 \(u\) 开始到从 \(u\) 到以 \(u\) 为根子树内一点作为终点的的路径撒了 \(i\) 次的最大收获
那么更新答案为 \(f[u][i]+g[v][m-i]\),考虑更新:
\]
\]
初始化为 \(f[u][i]=sum[u]\),\(g[u][i]=sum[u]-a[father]\)
实现的时候还有一个问题:由于一个是起点另一个是终点,更新答案是根据儿子的顺序来更新的,那么遍历的顺序是有影响的,还需要倒的扫一遍
代码实现
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn=1e5+5;
const int maxm=2e5+5;
int n,m,hd[maxn],cnt,f[maxn][105],g[maxn][105],ans,x,y,a[maxn],sta[maxn],tp,sum[maxn];
int read(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch)){
x=x*10+ch-48;
ch=getchar();
}
return x*f;
}
struct Edge{
int nxt,to;
}edge[maxm];
void add(int u,int v){
edge[++cnt].nxt=hd[u];
edge[cnt].to=v;
hd[u]=cnt;
return ;
}
void dfs(int u,int father){
for(int i=1;i<=m;i++){
f[u][i]=sum[u];
g[u][i]=sum[u]-a[father];
}
for(int i=hd[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==father)continue;
dfs(v,u);
for(int j=0;j<=m;j++){
ans=max(ans,f[u][j]+g[v][m-j]);
}
for(int j=1;j<=m;j++){
f[u][j]=max(f[u][j],max(f[v][j],f[v][j-1]+sum[u]-a[v]));
g[u][j]=max(g[u][j],max(g[v][j],g[v][j-1]+sum[u]-a[father]));
}
}
for(int i=hd[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==father)continue;
sta[++tp]=v;
}
for(int i=1;i<=m;i++){
f[u][i]=sum[u];
g[u][i]=sum[u]-a[father];
}
while(tp){
int v=sta[tp--];
for(int j=0;j<=m;j++){
ans=max(ans,f[u][j]+g[v][m-j]);
}
for(int j=1;j<=m;j++){
f[u][j]=max(f[u][j],max(f[v][j],f[v][j-1]+sum[u]-a[v]));
g[u][j]=max(g[u][j],max(g[v][j],g[v][j-1]+sum[u]-a[father]));
}
}
return ;
}
signed main(){
n=read();
m=read();
for(int i=1;i<=n;i++){
a[i]=read();
}
for(int i=1;i<=n-1;i++){
x=read();
y=read();
add(x,y);
add(y,x);
sum[x]+=a[y];
sum[y]+=a[x];
}
dfs(1,0);
cout<<ans;
return 0;
}
noip模拟21的更多相关文章
- NOIP模拟21+22
模拟21确实毒瘤...考场上硬刚T3 2.5h,成功爆零 T1.数论 看这题目就让人不想做,考场上我比较明智的打完暴力就弃掉了,没有打很久的表然后找规律. 正解貌似是乱搞,我们考虑一个比较显然的结论: ...
- NOIP 模拟 $21\; \rm Median$
题解 \(by\;zj\varphi\) 对于这个序列,可以近似得把它看成随机的,而对于随机数列,每个数的分布都是均匀的,所以中位数的变化可以看作是常数 那么可以维护一个指向中位数的指针,同时维护有多 ...
- NOIP 模拟 $21\; \rm Park$
题解 \(by\;zj\varphi\) 首先,分析一下这个答案:本质上是求在一条路径上,选择了一些点,这些点的贡献是它周围的点权和 - 它上一步的点权 对于一棵树,可以先确定一个根,然后每条路径就可 ...
- NOIP 模拟 $21\; \rm Game$
题解 考试的时候遇到了这个题,没多想,直接打了优先队列,但没想到分差竟然不是绝对值,自闭了. 正解: 值域很小,所以我们开个桶,维护当前最大值. 如果新加入的值大于最大值,那么它肯定直接被下一个人选走 ...
- Noip模拟21(持续翻车)2021.7.20
读题总是读错是不是没救了... T1 Median 中位数:按顺序排列的一组数据中居于中间位置的数. 能用上的高亮符号都用上了... 当时忘了就离谱.... 理解什么是中位数(真是个憨憨)后就可以开始 ...
- NOIP模拟 21
可爱的Dybala走了..(当然只是暂时) 又考了大众分.从rank5到rank17一个分. T1 折纸 秒切,爽啊 天皇偷看我代码,结束看见我A了还很惊讶,说我代码有锅 好沙雕哦 就跟个2b似的. ...
- [考试总结]noip模拟21
中位数要排序!!!!!! 中位数要排序!!!!!! 中位数要排序!!!!!! 中位数要排序!!!!!! 中位数要排序!!!!!! 分差不加绝对值!!!! 分差不加绝对值!!!! 分差不加绝对值!!!! ...
- NOIP模拟21:「Median·Game·Park」
T1:Median 线性筛+桶+随机化(??什么鬼?). 首先,题解一句话秀到了我: 考虑输入如此诡异,其实可以看作随机数据 随机数据?? 这就意味着分布均匀.. 又考虑到w< ...
- NOIP模拟17.9.21
NOIP模拟17.9.21 3 58 145 201 161.5 样例输出21.6 数据规模及约定对于40% 的数据,N <= 20对于60% 的数据,N <= 1000对于100% 的数 ...
随机推荐
- 【Java经验分享篇01】小白如何开始学会看开源项目?
目录 前言 1.理解开源 1.1.什么是开源? 1.2.开源的定义 1.2.1.开源软件优点 1.2.2.经典开源软件案例 1.3.关于开源协议 1.3.1.如何选择开源协议 2.如何查找开源项目 2 ...
- Python - 函数实战
前言 参考的是慕课网提供的实战,自己编码 http://www.imooc.com/wiki/pythonlesson1/function2.html 什么是模块化程序设计 在进行程序设计时将一个大程 ...
- DNS投毒学习分析总结
[一]背景 今晚看一份日志,数据很奇怪.大佬说是DNS投毒,盲点就来了,学习一下~ [二]内容 https://zhuanlan.zhihu.com/p/92899876 看完内容发现属于之前写的DN ...
- XMAPP搭建DVWA靶机
1 环境搭建 XMAPP+DVWA (我在win10下搭的环境) 更改了xmapp中Apache的两个端口号: dvwa/config中密钥和端口号按自己情况填好: dvwa/config中文件改为 ...
- Cobaltstrike与MSF会话派生
Cobaltstrike与MSF会话派生 前言 一般在渗透的过程中,Get到shell之后一般来说我喜欢上线到Cobaltstrike,但是Cobaltstrike的会话是60S更新一次,有时候功能也 ...
- vulnhub-DC:8靶机渗透记录
准备工作 在vulnhub官网下载DC:8靶机DC: 8 ~ VulnHub 导入到vmware,设置成NAT模式 打开kali准备进行渗透(ip:192.168.200.6) 信息收集 利用nmap ...
- Gnucash的投资记录
投资活动主要涉及3个账户:资产(Asset)下的子账户记录投资金额,收入(Income)下的子账户记录投资收入,支出(Expense)下的子账户记录投资费用支出(例如银行手续费,证券交易费等). 以购 ...
- Greenplum数仓监控解决方案(开源版本)
Greenplum监控解决方案 基于Prometheus+Grafana+greenplum_exporter+node_exporter实现 关联图 一.基本概念 1.Prometheus Pr ...
- JavaScript学习02(js快速入门)
快速入门 基本语法 JavaScript的语法和Java的语法类似,每个语句以;结束,语句块用{...}.但是JavaScrip并不强制要求在每个语句的结尾加;,浏览器中负责执行JavaScript代 ...
- CSS Transform完全指南 #flight.Archives007
Title/ CSS Transform完全指南 #flight.Archives007 序: 第7天了! 终身学习, 坚持创作, 为生活埋下微小的信仰. 我是忘我思考,共同进步! 简介: 一篇最简约 ...