L1正则化及其推导
\(L1\)正则化及其推导
在机器学习的Loss函数中,通常会添加一些正则化(正则化与一些贝叶斯先验本质上是一致的,比如\(L2\)正则化与高斯先验是一致的、\(L1\)正则化与拉普拉斯先验是一致的等等,在这里就不展开讨论)来降低模型的结构风险,这样可以使降低模型复杂度、防止参数过大等。大部分的课本和博客都是直接给出了\(L1\)正则化的解释解或者几何说明来得到\(L1\)正则化会使参数稀疏化,本来会给出详细的推导。
\(L1\)正则化
大部分的正则化方法是在经验风险或者经验损失\(L_{emp}\)(emprirical loss)上加上一个结构化风险,我们的结构化风险用参数范数惩罚\(\Omega(\theta)\),用来限制模型的学习能力、通过防止过拟合来提高泛化能力。所以总的损失函数(也叫目标函数)为:
\[
J(\theta; X, y) = L_{emp}(\theta; X, y) + \alpha\Omega(\theta) \tag{1.1}
\]
其中\(X\)是输入数据,\(y\)是标签,\(\theta\)是参数,\(\alpha \in [0,+\infty]\)是用来调整参数范数惩罚与经验损失的相对贡献的超参数,当\(\alpha = 0\)时表示没有正则化,\(\alpha\)越大对应该的正则化惩罚就越大。对于\(L1\)正则化,我们有:
\[
\Omega(\theta) = \|w\|_1 \tag{1.2}
\]
其中\(w\)是模型的参数。
几何解释

图1 上面中的蓝色轮廓线是没有正则化损失函数的等高线,中心的蓝色点为最优解,左图、右图分别为$L2$、$L1$正则化给出的限制。
可以看到在正则化的限制之下,\(L2\)正则化给出的最优解\(w^*\)是使解更加靠近原点,也就是说\(L2\)正则化能降低参数范数的总和。\(L1\)正则化给出的最优解\(w^*\)是使解更加靠近某些轴,而其它的轴则为0,所以\(L1\)正则化能使得到的参数稀疏化。
解析解的推导
有没有偏置的条件下,\(\theta\)就是\(w\),结合式\((1.1)\)与\((1.2)\),我们可以得到\(L1\)正则化的目标函数:
\[
J(w; X, y) = L_{emp}(w; X, y) + \alpha\|w\|_1 \tag{3.1}
\]
我们的目的是求得使目标函数取最小值的\(w^*\),上式对\(w\)求导可得:
\[
\nabla_w J(w; X, y) = \nabla_w L_{emp}(w; X, y) + \alpha \cdot sign(w) \tag{3.2}
\]
其中若\(w>0\),则\(sign(w)=1\);若\(w<0\),则\(sign(w) = -1\);若\(w=0\),则\(sign(w)=0\)。当\(\alpha = 0\),假设我们得到最优的目标解是\(w^*\),用秦勤公式在\(w^*\)处展开可以得到(要注意的\(\nabla J(w^*)=0\)):
\[
J(w; X, y) = J(w^*; X, y) + \frac{1}{2}(w - w^*)H(w-w^*) \tag{3.3}
\]
其中\(H\)是关于\(w\)的Hessian矩阵,为了得到更直观的解,我们简化\(H\),假设\(H\)这对角矩阵,则有:
\[
H = diag([H_{1,1},H_{2,2}...H_{n,n}]) \tag{3.4}
\]
将上式代入到式\((3.1)\)中可以得到,我们简化后的目标函数可以写成这样:
\[
J(w;X,y)=J(w^*;X,y)+\sum_i\left[\frac{1}{2}H_{i,i}(w_i-w_i^*)^2 + \alpha_i|w_i| \right] \tag{3.5}
\]
从上式可以看出,\(w\)各个方向的导数是不相关的,所以可以分别独立求导并使之为0,可得:
\[
H_{i,i}(w_i-w_i^*)+\alpha \cdot sign(w_i)=0 \tag{3.6}
\]
我们先直接给出上式的解,再来看推导过程:
\[
w_i = sign(w^*) \max\left\{ |w_i^*| - \frac{\alpha}{H_{i,i}},0 \right\} \tag{3.7}
\]
从式\((3.5)\)与式\((3.6)\)可以得到两点:
- 1.可以看到式\((3.5)\)中的二次函数是关于\(w^*\)对称的,所以若要使式\((3.5)\)最小,那么必有:\(|w_i|<|w^*|\),因为在二次函数值不变的程序下,这样可以使得\(\alpha|w_i|\)更小。
- 2.\(sign(w_i)=sign(w_i^*)\)或\(w_1=0\),因为在\(\alpha|w_i|\)不变的情况下,\(sign(w_i)=sign(w_i^*)\)或\(w_i=0\)可以使式\((3.5)\)更小。
由式\((3.6)\)与上述的第2点:\(sign(w_i)=sign(w_i^*)\)可以得到:
\[
\begin{split}
0 &= H_{i,i}(w_i-w_i^*)+\alpha \cdot sign(w_i^*) \cr
w_i &= w_i^* - \frac{\alpha}{H_{i,i}}sign(w_i^*) \cr
w_i &= sign(w_i^*)|w_i^*| - \frac{\alpha}{H_{i,i}}sign(w_i^*)\cr
&=sign(w_i^*)(|w_i^*| - \frac{\alpha}{H_{i,i}}) \cr
\end{split} \tag{3.8}
\]
我们再来看一下第2点:\(sign(w_i)=sign(w_i^*)\)或\(w_1=0\),若\(|w_i^*| < \frac{\alpha}{H_{i,i}}\),那么有\(sign(w_i) \neq sign(w_i^*)\),所以这时有\(w_1=0\),由于可以直接得到解式\((3.7)\)。
从这个解可以得到两个可能的结果:
- 1.若\(|w_i^*| \leq \frac{\alpha}{H_{i,i}}\),正则化后目标中的\(w_i\)的最优解是\(w_i=0\)。因为这个方向上\(L_{emp}(w; X, y)\)的影响被正则化的抵消了。
- 2.若\(|w_i^*| > \frac{\alpha}{H_{i,i}}\),正则化不会推最优解推向0,而是在这个方面上向原点移动了\(\frac{\alpha}{H_{i,i}}\)的距离。
L1正则化及其推导的更多相关文章
- Laplace(拉普拉斯)先验与L1正则化
Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝 ...
- L2与L1正则化理解
https://www.zhihu.com/question/37096933/answer/70507353 https://blog.csdn.net/red_stone1/article/det ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- L1正则化
正则化项本质上是一种先验信息,整个最优化问题从贝叶斯观点来看是一种贝叶斯最大后验估计,其中正则化项对应后验估计中的先验信息,损失函数对应后验估计中的似然函数,两者的乘积即对应贝叶斯最大后验估计的形式, ...
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- 正则化--L1正则化(稀疏性正则化)
稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的 ...
- LASSO回归与L1正则化 西瓜书
LASSO回归与L1正则化 西瓜书 2018年04月23日 19:29:57 BIT_666 阅读数 2968更多 分类专栏: 机器学习 机器学习数学原理 西瓜书 版权声明:本文为博主原创文章,遵 ...
随机推荐
- Vue keep-alive实践总结
<keep-alive>是Vue的内置组件,能在组件切换过程中将状态保留在内存中,防止重复渲染DOM. <keep-alive> 包裹动态组件时,会缓存不活动的组件实例,而不是 ...
- 第一篇--认识Jmeter
Jmeter是Apache组织开发的基于Java的压力测试工具,它最初被设计用于Web应用测试,但后来扩展到其他测试领域. 它可以用于测试静态和动态资源,例如静态文件.Java 小服务程序.CGI 脚 ...
- 为table元素添加操作日志
1.为所有的元素添加函数onchange() <input id="status" value="${status}" onchange="ch ...
- 了解 Spring Boot AutoConfiguration
原文:http://sivalabs.in/2016/03/how-springboot-autoconfiguration-magic/ 作者:Siva 译者:http://oopsguy.com ...
- MySQL整数类型说明 int(5) vs int(7)
今天突然发现, mysql 中int(1)和tinyint(1)中的1只是指定显示长度,并不表示存储长度,只有字段指定zerofill时有用.位数限制基本没有意义. int(5) 这里的5表示的是 最 ...
- SQL Server 常用操作XML
--修改FunctionNo节点值,@OperateFunctionNo为参数 set @DataXml.modify('replace value of (/CrudData/FunctionNo/ ...
- [js高手之路]Vue2.0基于vue-cli+webpack同级组件之间的通信教程
我们接着上文继续,本文我们讲解兄弟组件的通信,项目结构还是跟上文一样. 在src/assets目录下建立文件EventHandler.js,该文件的作用在于给同级组件之间传递事件 EventHandl ...
- PHP(函数)
<script> // 获得日 var time = new Date(); var x = time.getDate(); document.write(x+"日," ...
- 浏览器事件window.onload、o…
原文地址:浏览器事件window.onload.onfocus.onblur.onscroll和resize作者:lilyxiao <html> <head> <titl ...
- ospf剩余笔记
OSPF 流程图: 带宽 开销 10 100 100 19 1000 4 10000 2 区域的划分减少lsdb的大小 有利于网络管理员故障排除 网络故障不会影响到其他区域 邻接关系 ...