\(L1\)正则化及其推导

在机器学习的Loss函数中,通常会添加一些正则化(正则化与一些贝叶斯先验本质上是一致的,比如\(L2\)正则化与高斯先验是一致的、\(L1\)正则化与拉普拉斯先验是一致的等等,在这里就不展开讨论)来降低模型的结构风险,这样可以使降低模型复杂度、防止参数过大等。大部分的课本和博客都是直接给出了\(L1\)正则化的解释解或者几何说明来得到\(L1\)正则化会使参数稀疏化,本来会给出详细的推导。

\(L1\)正则化

大部分的正则化方法是在经验风险或者经验损失\(L_{emp}\)(emprirical loss)上加上一个结构化风险,我们的结构化风险用参数范数惩罚\(\Omega(\theta)\),用来限制模型的学习能力、通过防止过拟合来提高泛化能力。所以总的损失函数(也叫目标函数)为:

\[
J(\theta; X, y) = L_{emp}(\theta; X, y) + \alpha\Omega(\theta) \tag{1.1}
\]

其中\(X\)是输入数据,\(y\)是标签,\(\theta\)是参数,\(\alpha \in [0,+\infty]\)是用来调整参数范数惩罚与经验损失的相对贡献的超参数,当\(\alpha = 0\)时表示没有正则化,\(\alpha\)越大对应该的正则化惩罚就越大。对于\(L1\)正则化,我们有:

\[
\Omega(\theta) = \|w\|_1 \tag{1.2}
\]

其中\(w\)是模型的参数。

几何解释

图1 上面中的蓝色轮廓线是没有正则化损失函数的等高线,中心的蓝色点为最优解,左图、右图分别为$L2$、$L1$正则化给出的限制。

可以看到在正则化的限制之下,\(L2\)正则化给出的最优解\(w^*\)是使解更加靠近原点,也就是说\(L2\)正则化能降低参数范数的总和。\(L1\)正则化给出的最优解\(w^*\)是使解更加靠近某些轴,而其它的轴则为0,所以\(L1\)正则化能使得到的参数稀疏化。

解析解的推导

有没有偏置的条件下,\(\theta\)就是\(w\),结合式\((1.1)\)与\((1.2)\),我们可以得到\(L1\)正则化的目标函数:

\[
J(w; X, y) = L_{emp}(w; X, y) + \alpha\|w\|_1 \tag{3.1}
\]

我们的目的是求得使目标函数取最小值的\(w^*\),上式对\(w\)求导可得:

\[
\nabla_w J(w; X, y) = \nabla_w L_{emp}(w; X, y) + \alpha \cdot sign(w) \tag{3.2}
\]
其中若\(w>0\),则\(sign(w)=1\);若\(w<0\),则\(sign(w) = -1\);若\(w=0\),则\(sign(w)=0\)。当\(\alpha = 0\),假设我们得到最优的目标解是\(w^*\),用秦勤公式在\(w^*\)处展开可以得到(要注意的\(\nabla J(w^*)=0\)):

\[
J(w; X, y) = J(w^*; X, y) + \frac{1}{2}(w - w^*)H(w-w^*) \tag{3.3}
\]

其中\(H\)是关于\(w\)的Hessian矩阵,为了得到更直观的解,我们简化\(H\),假设\(H\)这对角矩阵,则有:

\[
H = diag([H_{1,1},H_{2,2}...H_{n,n}]) \tag{3.4}
\]

将上式代入到式\((3.1)\)中可以得到,我们简化后的目标函数可以写成这样:

\[
J(w;X,y)=J(w^*;X,y)+\sum_i\left[\frac{1}{2}H_{i,i}(w_i-w_i^*)^2 + \alpha_i|w_i| \right] \tag{3.5}
\]

从上式可以看出,\(w\)各个方向的导数是不相关的,所以可以分别独立求导并使之为0,可得:

\[
H_{i,i}(w_i-w_i^*)+\alpha \cdot sign(w_i)=0 \tag{3.6}
\]

我们先直接给出上式的解,再来看推导过程:

\[
w_i = sign(w^*) \max\left\{ |w_i^*| - \frac{\alpha}{H_{i,i}},0 \right\} \tag{3.7}
\]

从式\((3.5)\)与式\((3.6)\)可以得到两点:

  • 1.可以看到式\((3.5)\)中的二次函数是关于\(w^*\)对称的,所以若要使式\((3.5)\)最小,那么必有:\(|w_i|<|w^*|\),因为在二次函数值不变的程序下,这样可以使得\(\alpha|w_i|\)更小。
  • 2.\(sign(w_i)=sign(w_i^*)\)或\(w_1=0\),因为在\(\alpha|w_i|\)不变的情况下,\(sign(w_i)=sign(w_i^*)\)或\(w_i=0\)可以使式\((3.5)\)更小。

由式\((3.6)\)与上述的第2点:\(sign(w_i)=sign(w_i^*)\)可以得到:

\[
\begin{split}
0 &= H_{i,i}(w_i-w_i^*)+\alpha \cdot sign(w_i^*) \cr
w_i &= w_i^* - \frac{\alpha}{H_{i,i}}sign(w_i^*) \cr
w_i &= sign(w_i^*)|w_i^*| - \frac{\alpha}{H_{i,i}}sign(w_i^*)\cr
&=sign(w_i^*)(|w_i^*| - \frac{\alpha}{H_{i,i}}) \cr
\end{split} \tag{3.8}
\]
我们再来看一下第2点:\(sign(w_i)=sign(w_i^*)\)或\(w_1=0\),若\(|w_i^*| < \frac{\alpha}{H_{i,i}}\),那么有\(sign(w_i) \neq sign(w_i^*)\),所以这时有\(w_1=0\),由于可以直接得到解式\((3.7)\)。
从这个解可以得到两个可能的结果:

  • 1.若\(|w_i^*| \leq \frac{\alpha}{H_{i,i}}\),正则化后目标中的\(w_i\)的最优解是\(w_i=0\)。因为这个方向上\(L_{emp}(w; X, y)\)的影响被正则化的抵消了。
  • 2.若\(|w_i^*| > \frac{\alpha}{H_{i,i}}\),正则化不会推最优解推向0,而是在这个方面上向原点移动了\(\frac{\alpha}{H_{i,i}}\)的距离。

L1正则化及其推导的更多相关文章

  1. Laplace(拉普拉斯)先验与L1正则化

    Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝 ...

  2. L2与L1正则化理解

    https://www.zhihu.com/question/37096933/answer/70507353 https://blog.csdn.net/red_stone1/article/det ...

  3. L1正则化与L2正则化的理解

    1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...

  4. 【深度学习】L1正则化和L2正则化

    在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...

  5. L1正则化比L2正则化更易获得稀疏解的原因

    我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...

  6. L1正则化

    正则化项本质上是一种先验信息,整个最优化问题从贝叶斯观点来看是一种贝叶斯最大后验估计,其中正则化项对应后验估计中的先验信息,损失函数对应后验估计中的似然函数,两者的乘积即对应贝叶斯最大后验估计的形式, ...

  7. L1正则化和L2正则化

    L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...

  8. 正则化--L1正则化(稀疏性正则化)

    稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的 ...

  9. LASSO回归与L1正则化 西瓜书

    LASSO回归与L1正则化 西瓜书 2018年04月23日 19:29:57 BIT_666 阅读数 2968更多 分类专栏: 机器学习 机器学习数学原理 西瓜书   版权声明:本文为博主原创文章,遵 ...

随机推荐

  1. Win7怎么显示文件的后缀名

    Win7怎么显示文件的后缀名.. --------------- -------------- --------------- -------------- --------------- ----- ...

  2. 装饰模式(decorator)

    意图: 动态地给一个对象添加一些额外的职责,就增加功能而言,Decorator模式相比生成子类模式更为灵活 动机: 有时我们希望给某个对象而不是整个类添加一些功能.例如,一个图形用户界面工具箱允许你对 ...

  3. Andrew Ng机器学习课程笔记--week10(优化梯度下降)

    本周主要介绍了梯度下降算法运用到大数据时的优化方法. 一.内容概要 Gradient Descent with Large Datasets Stochastic Gradient Descent M ...

  4. 新手站长如何快速学习实践SEO?

     1. 任何老鸟都是从新人开始通过慢慢不断积累,经过各式各样的失败以及彷徨之后,才让自己拥有越来越多的经验,此时信心才会逐渐出现.如果没有勇气踏出第一步去尝试的话,那么永远不可能走在网络营销这条大路上 ...

  5. c++中find函数的用法

    find函数主要实现的是在容器内查找指定的元素,并且这个元素必须是基本数据类型的.查找成功返回一个指向指定元素的迭代器,即元素在容器中的下标,查找失败返回end迭代器. 头文件 #include &l ...

  6. hdu4336 Card Collector

    Problem Description In your childhood, do you crazy for collecting the beautiful cards in the snacks ...

  7. Spring框架——事务处理(编程式和声明式)

     一. 事务概述 ●在JavaEE企业级开发的应用领域,为了保证数据的完整性和一致性,必须引入数据库事务的概念,所以事务管理是企业级应用程序开发中必不可少的技术. ●事务就是一组由于逻辑上紧密关联而合 ...

  8. hibernate的基本配置

    1   Hibernate是一个非侵入式的ORMapping的框架. 2   Hibernate是一个能够将JAVA对象  通过   映射关系    映射到   关系型数据库的  这样一个框架 Hib ...

  9. 锋利的jQuery幻灯片实例

    //锋利的jQuery幻灯片实例 <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  10. iOS 微信支付流程详解

    背景 自微信支付.支付宝支付入世以来,移动端的支付日渐火热.虚拟货币有取代实体货币的趋向(这句纯属扯淡,不用管),支付在app开发中是一项基本的功能,有必要去掌握.从难易程度上讲,不管是微信支付还是支 ...