An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

 

 

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of keys to be inserted. Then Ndistinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88
 #include<cstdio>
#include<algorithm>
using namespace std;
struct Node{
int v,height;
Node* lchild,*rchild;
}*root; Node* newNode(int v){
Node* node = new Node;
node -> v = v;
node -> lchild = node -> rchild = NULL;
node -> height = ;
return node;
} int getHeight(Node* root){
if(root == NULL) return ;
return root -> height;
} void updateHeight(Node* root){
root -> height = max(getHeight(root -> lchild),getHeight(root -> rchild))+;
} int getBalanceFactor(Node* root){
return getHeight(root -> lchild) - getHeight(root -> rchild);
} void R(Node* &root){
Node* temp = root -> lchild;
root -> lchild = temp -> rchild;
temp -> rchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void L(Node* &root){
Node* temp = root -> rchild;
root -> rchild = temp -> lchild;
temp -> lchild = root;
updateHeight(root); //先更新root(子树)的高度
updateHeight(temp);
root = temp;
} void insert(Node* &root, int v){
if(root == NULL){
root = newNode(v);
return;
}
if(v < root -> v){
insert(root -> lchild,v);
updateHeight(root);
if(getBalanceFactor(root) == ){
if(getBalanceFactor(root -> lchild) == ){
R(root);
}else if(getBalanceFactor(root -> lchild) == -){
L(root -> lchild);
R(root);
}
}
}else{
insert(root -> rchild,v);
updateHeight(root);
if(getBalanceFactor(root) == -){
if(getBalanceFactor(root -> rchild) == -){
L(root);
}else if(getBalanceFactor(root -> rchild) == ){
R(root -> rchild);
L(root); }
}
}
} int main(){
int n,v;
scanf("%d",&n);
for(int i = ; i < n; i++){
scanf("%d",&v);
insert(root,v);
}
printf("%d",root -> v);
return ;
}


1066 Root of AVL Tree (25)的更多相关文章

  1. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  2. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  3. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  4. PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  5. 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. PAT 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. 【PAT甲级】1066 Root of AVL Tree (25 分)(AVL树建树模板)

    题意: 输入一个正整数N(<=20),接着输入N个结点的值,依次插入一颗AVL树,输出最终根结点的值. AAAAAccepted code: #define HAVE_STRUCT_TIMESP ...

  9. PAT (Advanced Level) 1066. Root of AVL Tree (25)

    AVL树的旋转.居然1A了.... 了解旋转方式之后,数据较小可以当做模拟写. #include<cstdio> #include<cstring> #include<c ...

随机推荐

  1. 基于node.js 的 websocket的移动端H5直播开发

    这一篇介绍一下基于node.js 的 websocket的移动端H5直播开发, 下载文章底部的源码,我是用vscode打开, 首先在第一个终端运行 npm run http-server 这个指令是运 ...

  2. ABP 基于DDD的.NET开发框架 学习(六)创建新动态Api

    我们想要这个服务暴露成一个Web API控制器,以方便客户端调用.ASP.NET Boilerplate能够自动且动态地为这个应用服务创建Web API 控制器,只需要一行配置代码即可完成. Dyna ...

  3. .net core使用ocelot---第六篇 负载均衡

    简介 .net core使用ocelot---第一篇 简单使用 .net core使用ocelot---第二篇 身份验证 .net core使用ocelot---第三篇 日志记录  .net core ...

  4. 5.href和src区别? title和alt【CSS】

    1.href (Hypertext Reference)指定网络资源的位置(超文本引用),从而在当前元素或者当前文档和由当前属性定义的需要的锚点或资源之间定义一个链接或者关系,在 link和a 等元素 ...

  5. JAVA - 普通类读取WEB-INF里面配置文件

    服务器:Tomcat 9 注意问题:配置文件应该放入Tomcat的正式工程目录中测试. 可用代码: package com.daoen.rtis.test; import java.io.FileRe ...

  6. Go strconv模块:字符串和基本数据类型之间转换

    本文转自Golove博客:http://www.cnblogs.com/golove/p/3262925.html ParseBool 将字符串转换为布尔值 // 它接受真值:1, t, T, TRU ...

  7. react基础学习和react服务端渲染框架next.js踩坑

    说明 React作为Facebook 内部开发 Instagram 的项目中,是一个用来构建用户界面的优秀 JS 库,于 2013 年 5 月开源.作为前端的三大框架之一,React的应用可以说是非常 ...

  8. JSP中Get提交方式的中文乱码解决

    最近对JSP&Servlert的原理很感兴趣,所以今天花时间看了一下:无奈在一个编码问题上困扰很久 这是我的解决思路: (1)检查网页(html/jsp)页面的编码: (2)检查服务器端的处理 ...

  9. vi / vim 基本操作

    进入vi的命令         vi filename :打开或新建文件,并将光标置于第一行首    vi n filename :打开文件,并将光标置于第n行首    vi filename :打开 ...

  10. Spring Boot 笔记 (1) - Maven、基本配置、Profile的使用

    一. Spring Boot 简介 开箱即用的一站式 Java EE 解决方案 Spring 技术栈的大整合 核心问题 暂时无法回答 Spring Boot 和 SOA 有什么区别? Spring B ...