An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

 

 

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of keys to be inserted. Then Ndistinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88
 #include<cstdio>
#include<algorithm>
using namespace std;
struct Node{
int v,height;
Node* lchild,*rchild;
}*root; Node* newNode(int v){
Node* node = new Node;
node -> v = v;
node -> lchild = node -> rchild = NULL;
node -> height = ;
return node;
} int getHeight(Node* root){
if(root == NULL) return ;
return root -> height;
} void updateHeight(Node* root){
root -> height = max(getHeight(root -> lchild),getHeight(root -> rchild))+;
} int getBalanceFactor(Node* root){
return getHeight(root -> lchild) - getHeight(root -> rchild);
} void R(Node* &root){
Node* temp = root -> lchild;
root -> lchild = temp -> rchild;
temp -> rchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void L(Node* &root){
Node* temp = root -> rchild;
root -> rchild = temp -> lchild;
temp -> lchild = root;
updateHeight(root); //先更新root(子树)的高度
updateHeight(temp);
root = temp;
} void insert(Node* &root, int v){
if(root == NULL){
root = newNode(v);
return;
}
if(v < root -> v){
insert(root -> lchild,v);
updateHeight(root);
if(getBalanceFactor(root) == ){
if(getBalanceFactor(root -> lchild) == ){
R(root);
}else if(getBalanceFactor(root -> lchild) == -){
L(root -> lchild);
R(root);
}
}
}else{
insert(root -> rchild,v);
updateHeight(root);
if(getBalanceFactor(root) == -){
if(getBalanceFactor(root -> rchild) == -){
L(root);
}else if(getBalanceFactor(root -> rchild) == ){
R(root -> rchild);
L(root); }
}
}
} int main(){
int n,v;
scanf("%d",&n);
for(int i = ; i < n; i++){
scanf("%d",&v);
insert(root,v);
}
printf("%d",root -> v);
return ;
}


1066 Root of AVL Tree (25)的更多相关文章

  1. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  2. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  3. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  4. PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  5. 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. PAT 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. 【PAT甲级】1066 Root of AVL Tree (25 分)(AVL树建树模板)

    题意: 输入一个正整数N(<=20),接着输入N个结点的值,依次插入一颗AVL树,输出最终根结点的值. AAAAAccepted code: #define HAVE_STRUCT_TIMESP ...

  9. PAT (Advanced Level) 1066. Root of AVL Tree (25)

    AVL树的旋转.居然1A了.... 了解旋转方式之后,数据较小可以当做模拟写. #include<cstdio> #include<cstring> #include<c ...

随机推荐

  1. java中反射的使用

    结合demo理解反射: import java.lang.reflect.*; /** * 反射使用 **/ public class ReflectDemo{ public static void ...

  2. 【洛谷 P1641】 [SCOI2010]生成字符串(Catalan数)

    题目链接 可以看成在坐标系中从\((0,0)\)用\(n+m\)步走到\((n+m,n-m)\)的方案数,只能向右上\((1)\)或者右下\((0)\)走,而且不能走到\(y=-1\)这条直线上. 不 ...

  3. 安卓MediaPlayer框架之Binder机制

    Binder简介 Binder是Android系统进程间通信的主要方式之一. 1.在ASOP中,Binder使用传统的C/S通信方式:即一个进程作为服务端提供诸如视音频解封装,解码渲染,地址查询等各种 ...

  4. Dubbo 高级特性实践-泛化调用

    引言 当后端Java服务用Dubbo协议作为RPC方案的基础,但部分消费方是前端Restful的PHP服务,不能直接调用,于是在中间架设了Router服务提供统一的基于HTTP的后端调用入口. 而Ro ...

  5. c# Group类

  6. Django使用swagger生成接口文档

    参考博客:Django接入Swagger,生成Swagger接口文档-操作解析 Swagger是一个规范和完整的框架,用于生成.描述.调用和可视化RESTful风格的Web服务.总体目标是使客户端和文 ...

  7. Needham-Schroeder Scyther工具形式化过程

    1.Needham-Schroeder Public key Protocol 协议的通信认证的过程 顺序图的 1.  A-> S :   A,  B 2. S->A:     {Ks, ...

  8. linux网卡名称修改

    vim /etc/sysconfig/grub ,在倒数第二行添加如下代码 net.ifnames=0 biosdevname=0 GRUB_TIMEOUT=5 GRUB_DISTRIBUTOR=&q ...

  9. LeetCode - 61、旋转链表

    给定一个链表,旋转链表,将链表每个节点向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: 1->2->3->4->5->NULL, k = 2 输出: 4-& ...

  10. 【Vue-01】基础Vue语法+JS复习

    Vue学习疑问及总结_SZS 0.vue router 带参数跳转 发送:this.$router.push({path:'/news',query:{id:row.id}}) 接收:var id=t ...