[Everyday Mathematics]20150108
设 $f$ 在 $(a,b)$ 上 $n+1$ 次可导, 且 $$\bex \ln\frac{f(b)+f'(b)+\cdots+f^{(n)}(b)}{f(a)+f'(a)+\cdots+f^{(n)}(a)}=b-a. \eex$$ 试证: 存在 $c\in (a,b)$, 使得 $$\bex f^{(n+1)}(c)=f(c). \eex$$
[Everyday Mathematics]20150108的更多相关文章
- [Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...
- [Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...
- [Everyday Mathematics]20150302
$$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...
- [Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...
- [Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...
- [Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...
- [Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$
- [Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...
- [Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
随机推荐
- Python分析NGINX LOG版本二
不好意思,上一版逻辑有错误,(只分析了一次就没了) 此版改正. 按同事要改,作成传参数形式,搞定. #!/usr/bin/env python # coding: utf-8 ############ ...
- Android 通过程序添加桌面快捷方式
原理:通过代码向 Launcher 中的广播接收者发送广播来创建快捷图标. 首先要声明的权限是: <!--添加图标的权限--> <uses-permission android:na ...
- Python str字符串常用到的函数
# -*- coding: utf-8 -*- x='pythonnnnnnoooo' print type(x) # <type 'str'> 输出类型 print x.capitali ...
- JavaWeb项目开发案例精粹-第3章在线考试系统-003Dao层
1. package com.sanqing.dao; import java.util.List; import com.sanqing.po.Student; public interface S ...
- ubuntu 下搭建vsftp
1. 安装:sudo apt-get install vsftpd 2. 我的目的是建立个ftp,专门的账户访问,账户不可以登陆.不允许匿名登陆 3. 更改配置文件/etc/vsftpd.conf l ...
- java c# 加密与解密对照
原文 java c# 加密与解密对照 最近一直烦恼,java , c# 加密的不同,然后整理了一下,留个备份的轮子: 其中在 java.c#加密转换时,最重要的是 IV 的确定,我常常用如下方法使得j ...
- Camel、Pastal、匈牙利标记法区别及联系
在英语中,依靠单词的大小写拼写复合词的做法,叫做"骆驼拼写法"(CamelCase).比如,backColor这个复合词,color的第一个字母采用大写. 这种拼写法在正规的英语中 ...
- JS中令人发指的valueOf方法介绍
彭老湿近期月报里提到了valueOf方法,兴致来了翻了下ECMA5里关于valueOf方法的介绍,如下: 15.2.4.4 Object.prototype.valueOf ( ) When the ...
- UVa 11992 (线段树 区间修改) Fast Matrix Operations
比较综合的一道题目. 二维的线段树,支持区间的add和set操作,然后询问子矩阵的sum,min,max 写完这道题也是醉醉哒,代码仓库里还有一份代码就是在query的过程中也pushdown向下传递 ...
- UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design
题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi ...