$ \color{#0066ff}{ 题目描述 }$

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。

游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。

小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

\(\color{#0066ff}{输入格式}\)

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。 接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

\(\color{#0066ff}{输出格式}\)

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

\(\color{#0066ff}{输入样例}\)

4 3
1 1
1 2
1 3
1 5

\(\color{#0066ff}{输出样例}\)

0 0 1 1

\(\color{#0066ff}{数据范围与提示}\)

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

\(\color{#0066ff}{题解}\)

一看题,直接上SG定理记忆化搜索

然后就TLE 了。。。

然后观察求SG的过程,发现是一个这东西\(\lfloor\frac x i\rfloor\)

这东西显然就整数分块啦

对于每个块,是否统计贡献是根\(x\bmod i\)的奇偶性有关的

然而\(x\bmod i\)的奇偶显然是交替的,所以直接枚举相邻两个即可

还有一个优化,把vis的意义改成当前sg值是属于哪个状态的后继

这样程序会快几倍!

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5 + 120;
int F, T, n;
int sg[maxn];
bool have[maxn];
int vis[maxn];
int work(int x) {
if(x < F) return sg[x] = 0;
if(have[x]) return sg[x];
have[x] = true;
for(int l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
for(int i = l; i <= std::min(l + 1, x); i++) {
int tot = 0;
if((x % i) & 1) tot ^= work(x / i + 1);
if((i - x % i) & 1) tot ^= work(x / i);
vis[tot] = x;
}
}
while(vis[sg[x]] == x) sg[x]++;
return sg[x];
}
int main() {
for(T = in(), F = in(); T --> 0;) {
n = in();
int tot = 0;
for(int i = 1; i <= n; i++) tot ^= work(in());
printf("%d%c", tot? 1 : 0, T? ' ' : '\n');
}
return 0;
}

P3235 [HNOI2014]江南乐的更多相关文章

  1. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  2. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  3. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  4. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  5. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  6. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  7. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  8. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  9. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

随机推荐

  1. C# 泛型类型参数的约束

    在定义泛型类时,可以对客户端代码能够在实例化类时用于类型参数的类型种类施加限制.如果客户端代码尝试使用某个约束所不允许的类型来实例化类,则会产生编译时错误.这些限制称为约束.约束是使用 where 上 ...

  2. leetcode832

    vector<vector<int>> flipAndInvertImage(vector<vector<int>>& A) { vector& ...

  3. 【知识结构】最强Web认证知识体系

    花了些时间总结了下Web认证,以及各种方式的利弊和使用,后续后继续更新.文章转载请注明出处:https://www.cnblogs.com/pengdai/p/9144843.html -----20 ...

  4. 数据库与vs的连接

    新建一个MFC基于对话框的项目后,更改属性, 其中需要将include(里面都是MySQL的头文件)lib是库文件,将.dll放入与.exe同级目录下,或放入系统里(c:\windows\system ...

  5. 分布式全文检索系统SolrCloud简介

    前言 本文简单描述SolrCloud的特性,基本结构和入门,基于Solr4.5版本. Lucene是一个Java语言编写的利用倒排原理实现的文本检索类库.Solr是以Lucene为基础实现的文本检索应 ...

  6. 367. Valid Perfect Square判断是不是完全平方数

    [抄题]: Given a positive integer num, write a function which returns True if num is a perfect square e ...

  7. mybatis 框架 的简单使用

    # Global logging configuration #在开发环境下日志级别要设置成DEBUG,生产环境设置成info或error log4j.rootLogger=DEBUG, stdout ...

  8. Opennebula自定义VM 实现方法-Contextualizing Virtual Machines 2.2

    from:http://archives.opennebula.org/documentation:archives:rel2.2:cong There are two contextualizati ...

  9. bootstrap实现菜单定位

    <!DOCTYPE html><html lang="zh-cn"><head><meta charset="utf-8&quo ...

  10. python,itertools模块

    itertools模块的使用: # coding=utf-8 """ itertools模块 """ import itertools im ...