$ \color{#0066ff}{ 题目描述 }$

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。

游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。

小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

\(\color{#0066ff}{输入格式}\)

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。 接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

\(\color{#0066ff}{输出格式}\)

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

\(\color{#0066ff}{输入样例}\)

4 3
1 1
1 2
1 3
1 5

\(\color{#0066ff}{输出样例}\)

0 0 1 1

\(\color{#0066ff}{数据范围与提示}\)

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

\(\color{#0066ff}{题解}\)

一看题,直接上SG定理记忆化搜索

然后就TLE 了。。。

然后观察求SG的过程,发现是一个这东西\(\lfloor\frac x i\rfloor\)

这东西显然就整数分块啦

对于每个块,是否统计贡献是根\(x\bmod i\)的奇偶性有关的

然而\(x\bmod i\)的奇偶显然是交替的,所以直接枚举相邻两个即可

还有一个优化,把vis的意义改成当前sg值是属于哪个状态的后继

这样程序会快几倍!

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5 + 120;
int F, T, n;
int sg[maxn];
bool have[maxn];
int vis[maxn];
int work(int x) {
if(x < F) return sg[x] = 0;
if(have[x]) return sg[x];
have[x] = true;
for(int l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
for(int i = l; i <= std::min(l + 1, x); i++) {
int tot = 0;
if((x % i) & 1) tot ^= work(x / i + 1);
if((i - x % i) & 1) tot ^= work(x / i);
vis[tot] = x;
}
}
while(vis[sg[x]] == x) sg[x]++;
return sg[x];
}
int main() {
for(T = in(), F = in(); T --> 0;) {
n = in();
int tot = 0;
for(int i = 1; i <= n; i++) tot ^= work(in());
printf("%d%c", tot? 1 : 0, T? ' ' : '\n');
}
return 0;
}

P3235 [HNOI2014]江南乐的更多相关文章

  1. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  2. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  3. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  4. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  5. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  6. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  7. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  8. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  9. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

随机推荐

  1. undefined&nbsp;reference&nbsp;to…

    照着GUN/Linux编程指南中的一个例子输入编译,结果出现如下错误: undefined reference to 'pthread_create' undefined reference to ' ...

  2. RT2870移植到s3c2416后续验证无线…

    我的无线网卡显示的事ra0,所以把下面的wlan0换成ra0即可:视自己的情况而定 1. 打开无线网卡电源 iwconfig wlan0 txpower on 2. 列出区域内的无线网络 iwlist ...

  3. RequestParam注解的Url参数被省略时该如何处理

    RequestParam注解的Url参数被省略时该如何处理 1.RequestParam的用法 ==================== RequestParam注解可以把包含在Url中的参数映射到U ...

  4. Javamelody部署手册

    Javamelody部署手册 1.  Javamelody下载 下载地址:http://code.google.com/p/javamelody/downloads/list(注:需要FQ才能打开下载 ...

  5. 【总结整理】pv、uv

    1.pv的全称是page view,译为页面浏览量或点击量,通常是衡量一个网站甚至一条网络新闻的指标.用户每次对网站中的一个页面的请求或访问均被记录1个PV,用户对同一页面的多次访问,pv累计.例如, ...

  6. 23-单词数(HDU2070)

    单词数 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. Net-tools

    一.简介 Net-tools 包含如下程序,构成了 Linux 网络的基础. arp用来操作核心的ARP(地址解析协议)的高速缓存,通常用来增加.删除一个条目以及转储ARP高速缓存. dnsdomai ...

  8. Python3 网络爬虫开发实战学习弱点书签

    1. urllib.robotparse模块对robot.txt文件的解析,can_fetch()方法和parse()方法. Page121 2. lxml.etree模块自动补全Html代码,Htm ...

  9. 关于Rest Framework中View、APIView与GenericAPIView的对比分析

    关于Rest Framework中View.APIView与GenericAPIView的对比分析  https://blog.csdn.net/odyssues_lee/article/detail ...

  10. MVC 知识点随笔

    1.https://msdn.microsoft.com/zh-cn/gg981918  <text></text>  等同于 @: