线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w).
Because there is clearly no hope of finding an anlytical solution to the equation ∂E(w)=0, we resort to
iterative numerical procedures.
On-line gradient descent, also known as sequential gradient descent or stochastic gradient descent, makes
an update to the weight vector based on one data point at a time.
One advantage of on-line methods compared to batch methods is that the former handle redundancy in the data
much more efficiently. Another property of on-line gradient descent is the possibility of escaping from local minima,
since a stationary point with respect to the error function for the whole data set will generally not be a stationary point
for each data point individually.
Another advantage of on-line learning is the fact that it requires much less storage than batch learning.
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <cfloat>
#include <cmath>
double dis(double &train, double &query) {
double weight=exp(-0.5*pow(train-query, 2));
return weight;
}
/*最小二乘法*/
template <typename PairIterator>
bool GetLinearFit(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
size_t n=end_it-begin_it;
double sum_x2=0.0,sum_y=0.0,sum_x=0.0,sum_xy=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
sum_x2+=(it->first)*(it->first);
sum_y+=it->second;
sum_x+=it->first;
sum_xy+=(it->first)*(it->second);
}
slope=(n*sum_xy-sum_x*sum_y)/(n*sum_x2-sum_x*sum_x);
y_intercept=(sum_x2*sum_y-sum_x*sum_xy)/(n*sum_x2-sum_x*sum_x);
return true;
}
/*locally weighted linear regression(LWR)*/
template<typename PairIterator>
bool LWR(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
/*x are the data points for each local regression model. They are usually (but not always) the data points in your sample.*/
double query=5.5;
size_t n=end_it-begin_it;
double J=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
J+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second)*dis(it->first, query);
}
J=J*0.5/n;
while(true) {
double temp0=0,temp1=0;
for(PairIterator it=begin_it;it!=end_it;++it) {
temp0+=(y_intercept+slope*(it->first)-it->second)*dis(it->first, query);
temp1+=(y_intercept+slope*(it->first)-it->second)*(it->first)*dis(it->first, query);
}
temp0=temp0/n;
temp1=temp1/n;
/*0.03为学习率阿尔法*/
y_intercept=y_intercept-0.03*temp0;
slope=slope-0.03*temp1;
double MSE=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
MSE+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second)*dis(it->first, query);
}
MSE=0.5*MSE/n;
if(std::abs(J-MSE)<0.00000001)
break;
J=MSE;
}
return true;
}
/*批量梯度下降法,Batch Gradient Desscent,BGD*/
template<typename PairIterator>
bool BatchGradientDescent(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
size_t n=end_it-begin_it;
double J=0.0;
/*the initial cost function*/
for(PairIterator it=begin_it;it!=end_it;++it) {
J+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
J=J*0.5/n;
while(true) {
double temp0=0,temp1=0;
for(PairIterator it=begin_it;it!=end_it;++it) {
temp0+=(y_intercept+slope*(it->first)-it->second);
temp1+=(y_intercept+slope*(it->first)-it->second)*(it->first);
}
temp0=temp0/n;
temp1=temp1/n;
/*0.03为学习率阿尔法*/
y_intercept=y_intercept-0.03*temp0;
slope=slope-0.03*temp1;
double MSE=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
MSE+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
MSE=0.5*MSE/n;
if(std::abs(J-MSE)<0.00000001)
break;
J=MSE;
}
return true;
}
/*随机梯度下降法,Stochastic Gradient Desscent,SGD*/
template<typename PairIterator>
bool StochasticGradientDescent(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
size_t n=end_it-begin_it;
double J=0.0;
/*the initial cost function*/
for(PairIterator it=begin_it;it!=end_it;++it) {
J+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
J=0.5*J/n;
while(true) {
double temp0=0,temp1=0;
for(PairIterator it=begin_it;it!=end_it;++it) {
temp0=(y_intercept+slope*(it->first)-it->second);
temp1=(y_intercept+slope*(it->first)-it->second)*(it->first);
/*0.03为学习率阿尔法*/
y_intercept=y_intercept-0.03*temp0;
slope=slope-0.03*temp1;
double MSE=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
MSE+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
MSE=0.5*MSE/n;
if(std::abs(J-MSE)<0.00000001)
break;
J=MSE;
}
break;
}
return true;
}
int main() {
std::ifstream in;
in.open("ex2x.dat");
if(!in) {
std::cout<<"open file ex2x.dat failed!"<<std::endl;
return 1;
}
std::vector<double> datax,datay;
double temp;
while(in>>temp) {
datax.push_back(temp);
}
in.close();
in.open("ex2y.dat");
if(!in) {
std::cout<<"open file ex2y.dat failed!"<<std::endl;
return 1;
}
while(in>>temp) {
datay.push_back(temp);
}
std::vector<std::pair<double, double> > data;
for(std::vector<double>::const_iterator iterx=datax.begin(),itery=datay.begin();iterx!=datax.end(),itery!=datay.end();iterx++,itery++) {
data.push_back(std::pair<double,double>(*iterx,*itery));
}
in.close();
double slope=0.0;
double y_intercept=0.0;
GetLinearFit(data.begin(),data.end(),slope,y_intercept);
std::cout<<"最小二乘法得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
slope=1.0,y_intercept=1.0;
BatchGradientDescent(data.begin(),data.end(),slope,y_intercept);
std::cout<<"批量梯度下降法得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
slope=1.0,y_intercept=1.0;
StochasticGradientDescent(data.begin(),data.end(),slope,y_intercept);
std::cout<<"随机梯度下降法得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
slope=1.0,y_intercept=1.0;
LWR(data.begin(),data.end(),slope,y_intercept);
std::cout<<"locally weighted linear regression 得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
return 0;
}
线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++的更多相关文章
- Locally Weighted Linear Regression 局部加权线性回归-R实现
局部加权线性回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问 ...
- Locally weighted linear regression(局部加权线性回归)
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么 ...
- 局部加权线性回归(Locally weighted linear regression)
首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比 ...
- 梯度下降&随机梯度下降&批梯度下降
梯度下降法 下面的h(x)是要拟合的函数,J(θ)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(θ)就出来了.其中m是训练集的记录条数,j是参数的个数. 梯 ...
- matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...
- sklearn中实现随机梯度下降法(多元线性回归)
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...
- NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...
- L20 梯度下降、随机梯度下降和小批量梯度下降
airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenbe ...
- 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...
随机推荐
- 20190625_mysql5.7查看及其解锁_被锁的表
[root@localhost ~]# mysql -u myroot -pEnter password: mysql> show OPEN TABLES where In_use > 0 ...
- vs2015 配置 cplex
首先设置模式为Release, 根据软件选择x86或x64 附加库目录(链接器 - 常规) C:\Program Files\IBM\ILOG\CPLEX_Studio128\cplex\lib\x6 ...
- 6.3.4 使用marshal 模块操作二进制文件
Python 标准库 marshal 也可以进行对象的序列化和反序列化,下面的代码进行了简单演示. import marshal x1 = 30 x2 = 5.0 x3 = [1,2,3] x4 = ...
- 前端开发神器之chrome 综述
作为前端工程师,也许你对chrome开发工具不陌生,但也谈不上对各个模块有深入了解. 本文主要是为chrome开发工具使用这个系列做个开篇. 参考资料: 谷歌开发者: https://develope ...
- Vladik and Entertaining Flags
Vladik and Entertaining Flags time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- UVa - 11452 - Dancing the Cheeky-Cheeky
先上题目: F. Dancing the Cheeky-Cheeky Context The Cheeky-Cheeky is a new song. They dance it in Mula, ...
- Grails,应该不错
就当学习英文,也慢慢看看啦..
- Linux终止进程的工具kill/killall/pkill/xkill/skill用法区别(转)
一. 终止进程的工具kill .killall.pkill.xkill 终止一个进程或终止一个正在运行的程序,一般是通过kill .killall.pkill.xkill等进行.比如一个程序已经死掉, ...
- 开源GIS软件 4
空间数据操作框架 Apache SIS Apache SIS 是一个空间的框架,可以更好地搜索,数据聚类,归档,或任何其他相关的空间坐标表示的需要. kvwmap kvwmap是一个采用PHP开发的W ...
- vs2010+cuda5.0+qt4.8
在进行CUDA处理的时候,总是在控制台程序下,于是就想要通过qt进行界面处理. 一开始先测试一下qt的环境,新建一个qt项目,不过在运行的时候提示平台不对,换成64位 出现 这个是qt的版本问题,在右 ...