线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w).
Because there is clearly no hope of finding an anlytical solution to the equation ∂E(w)=0, we resort to
iterative numerical procedures.
On-line gradient descent, also known as sequential gradient descent or stochastic gradient descent, makes
an update to the weight vector based on one data point at a time.
One advantage of on-line methods compared to batch methods is that the former handle redundancy in the data
much more efficiently. Another property of on-line gradient descent is the possibility of escaping from local minima,
since a stationary point with respect to the error function for the whole data set will generally not be a stationary point
for each data point individually.
Another advantage of on-line learning is the fact that it requires much less storage than batch learning.
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <cfloat>
#include <cmath>
double dis(double &train, double &query) {
double weight=exp(-0.5*pow(train-query, 2));
return weight;
}
/*最小二乘法*/
template <typename PairIterator>
bool GetLinearFit(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
size_t n=end_it-begin_it;
double sum_x2=0.0,sum_y=0.0,sum_x=0.0,sum_xy=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
sum_x2+=(it->first)*(it->first);
sum_y+=it->second;
sum_x+=it->first;
sum_xy+=(it->first)*(it->second);
}
slope=(n*sum_xy-sum_x*sum_y)/(n*sum_x2-sum_x*sum_x);
y_intercept=(sum_x2*sum_y-sum_x*sum_xy)/(n*sum_x2-sum_x*sum_x);
return true;
}
/*locally weighted linear regression(LWR)*/
template<typename PairIterator>
bool LWR(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
/*x are the data points for each local regression model. They are usually (but not always) the data points in your sample.*/
double query=5.5;
size_t n=end_it-begin_it;
double J=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
J+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second)*dis(it->first, query);
}
J=J*0.5/n;
while(true) {
double temp0=0,temp1=0;
for(PairIterator it=begin_it;it!=end_it;++it) {
temp0+=(y_intercept+slope*(it->first)-it->second)*dis(it->first, query);
temp1+=(y_intercept+slope*(it->first)-it->second)*(it->first)*dis(it->first, query);
}
temp0=temp0/n;
temp1=temp1/n;
/*0.03为学习率阿尔法*/
y_intercept=y_intercept-0.03*temp0;
slope=slope-0.03*temp1;
double MSE=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
MSE+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second)*dis(it->first, query);
}
MSE=0.5*MSE/n;
if(std::abs(J-MSE)<0.00000001)
break;
J=MSE;
}
return true;
}
/*批量梯度下降法,Batch Gradient Desscent,BGD*/
template<typename PairIterator>
bool BatchGradientDescent(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
size_t n=end_it-begin_it;
double J=0.0;
/*the initial cost function*/
for(PairIterator it=begin_it;it!=end_it;++it) {
J+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
J=J*0.5/n;
while(true) {
double temp0=0,temp1=0;
for(PairIterator it=begin_it;it!=end_it;++it) {
temp0+=(y_intercept+slope*(it->first)-it->second);
temp1+=(y_intercept+slope*(it->first)-it->second)*(it->first);
}
temp0=temp0/n;
temp1=temp1/n;
/*0.03为学习率阿尔法*/
y_intercept=y_intercept-0.03*temp0;
slope=slope-0.03*temp1;
double MSE=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
MSE+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
MSE=0.5*MSE/n;
if(std::abs(J-MSE)<0.00000001)
break;
J=MSE;
}
return true;
}
/*随机梯度下降法,Stochastic Gradient Desscent,SGD*/
template<typename PairIterator>
bool StochasticGradientDescent(PairIterator begin_it, PairIterator end_it, double& slope, double& y_intercept) {
if(begin_it==end_it) {
return false;
}
size_t n=end_it-begin_it;
double J=0.0;
/*the initial cost function*/
for(PairIterator it=begin_it;it!=end_it;++it) {
J+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
J=0.5*J/n;
while(true) {
double temp0=0,temp1=0;
for(PairIterator it=begin_it;it!=end_it;++it) {
temp0=(y_intercept+slope*(it->first)-it->second);
temp1=(y_intercept+slope*(it->first)-it->second)*(it->first);
/*0.03为学习率阿尔法*/
y_intercept=y_intercept-0.03*temp0;
slope=slope-0.03*temp1;
double MSE=0.0;
for(PairIterator it=begin_it;it!=end_it;++it) {
MSE+=(y_intercept+slope*(it->first)-it->second)*(y_intercept+slope*(it->first)-it->second);
}
MSE=0.5*MSE/n;
if(std::abs(J-MSE)<0.00000001)
break;
J=MSE;
}
break;
}
return true;
}
int main() {
std::ifstream in;
in.open("ex2x.dat");
if(!in) {
std::cout<<"open file ex2x.dat failed!"<<std::endl;
return 1;
}
std::vector<double> datax,datay;
double temp;
while(in>>temp) {
datax.push_back(temp);
}
in.close();
in.open("ex2y.dat");
if(!in) {
std::cout<<"open file ex2y.dat failed!"<<std::endl;
return 1;
}
while(in>>temp) {
datay.push_back(temp);
}
std::vector<std::pair<double, double> > data;
for(std::vector<double>::const_iterator iterx=datax.begin(),itery=datay.begin();iterx!=datax.end(),itery!=datay.end();iterx++,itery++) {
data.push_back(std::pair<double,double>(*iterx,*itery));
}
in.close();
double slope=0.0;
double y_intercept=0.0;
GetLinearFit(data.begin(),data.end(),slope,y_intercept);
std::cout<<"最小二乘法得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
slope=1.0,y_intercept=1.0;
BatchGradientDescent(data.begin(),data.end(),slope,y_intercept);
std::cout<<"批量梯度下降法得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
slope=1.0,y_intercept=1.0;
StochasticGradientDescent(data.begin(),data.end(),slope,y_intercept);
std::cout<<"随机梯度下降法得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
slope=1.0,y_intercept=1.0;
LWR(data.begin(),data.end(),slope,y_intercept);
std::cout<<"locally weighted linear regression 得到的结果:"<<std::endl;
std::cout<<"slope: "<<slope<<std::endl;
std::cout<<"y_intercept: "<<y_intercept<<std::endl;
return 0;
}
线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++的更多相关文章
- Locally Weighted Linear Regression 局部加权线性回归-R实现
局部加权线性回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问 ...
- Locally weighted linear regression(局部加权线性回归)
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么 ...
- 局部加权线性回归(Locally weighted linear regression)
首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比 ...
- 梯度下降&随机梯度下降&批梯度下降
梯度下降法 下面的h(x)是要拟合的函数,J(θ)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(θ)就出来了.其中m是训练集的记录条数,j是参数的个数. 梯 ...
- matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...
- sklearn中实现随机梯度下降法(多元线性回归)
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...
- NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...
- L20 梯度下降、随机梯度下降和小批量梯度下降
airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenbe ...
- 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...
随机推荐
- NetBeans将java项目编译成jar包
1.找到file选项下的build.xml.
- C# 打开模态对话框 和打开文件夹
C# 打开另一个窗体,(模态对话框) Form1 frm= new Form1(); //创建对象 DialogResult retServer = frm.ShowDialog(); //模式对话框 ...
- Spring Boot项目中使用 TrueLicense 生成和验证License(服务器许可)
一 简介 License,即版权许可证,一般用于收费软件给付费用户提供的访问许可证明.根据应用部署位置的不同,一般可以分为以下两种情况讨论: 应用部署在开发者自己的云服务器上.这种情况下用户通过账号登 ...
- unzip 命令巧用举例
1.把文件解压到当前目录下 unzip master.zip 2.如果要把文件解压到指定的目录下,需要用到-d参数. unzip -d /tmp master.zip 3.解压的时候,有时候不想覆盖已 ...
- vino-server服务是啥服务
近期接手一个项目,开始梳理服务器,突然发现有个进程是开启5900远程桌面端口的, 在不知情的情况下怕被人给利用了,啥也不说,先干掉再说. server端开启vino-server,允许别人查看自己的桌 ...
- 《Mysql - 到底可不可以使用 Join ?》
一:Join 的问题? - 在实际生产中,使用 join 一般会集中在以下两类: - DBA 不让使用 Join ,使用 Join 会有什么问题呢? - 如果有两个大小不同的表做 join,应该用哪个 ...
- 原型链、构造函数、箭头函数、se6数组去重
原型链 例子如下: var arr = [1, 2, 3]; 其原型链为:arr ----> Array.prototype ----> Object.prototype ----> ...
- 总结这几天js的学习内容
对js中难点的理解 1.把变量对象像遍历数组一样简单 对于数组 ,迭代出来的是数组元素,对于对象 ,迭代出来的是对象的属性: var obj = { w: "wen", j: &q ...
- Luogu P1550 打井Watering Hole
P1550 [USACO08OCT]打井Watering Hole 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to ...
- 腾讯云&搭建微信小程序服务
准备域名和证书 任务时间:20min ~ 40min 小程序后台服务需要通过 HTTPS 访问,在实验开始之前,我们要准备域名和 SSL 证书. 域名注册 如果您还没有域名,可以在腾讯云上选购,过程可 ...