[poj P1141] Brackets Sequence
[poj P1141] Brackets Sequence
Time Limit: 1000MS Memory Limit: 65536K Special Judge
Description
Let us define a regular brackets sequence in the following way:1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.Output
Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
Sample Input
([(]
Sample Output
()[()]
Source
Northeastern Europe 2001
括号匹配的变形题。
这题的范围,非常的适合区间dp。
那么我们来设计一个dp。设f[i][j]为将原串中i~j全部匹配好需要增加的字符数量。
则:
先赋值正无穷。
对于j-i+1==1 ---> f[i][j]=1
对于j-i+1==2 ---> f[i][j]=cmp(a[i],a[j])?0:2
对于j-i+1>=3 ---> f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]),if (cmp(a[i],a[j])) f[i][j]=min(f[i][j],f[i+1][j-1])
其中cmp代表两个字符是否匹配。
那么这样,就轻松计算出了f[1][n]。
这一题要让我们输出方案。
一般dp的题都可以用dfs递归输出方案。
具体实现应该很好想吧!但是有些细节和顺序容易搞错。
下面先给出几组数据(不一定完全相同,有spj没关系):
in1:
[]]]]
out1:
[][][][]
in2:
)))(((
out2:
()()()()()()
in3:
“空串”
out3:
“空串”
in4:
([][]([]()))[()]([])
out4:
([][]([]()))[()]([])
code:
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> using namespace std; ; int n,f[N][N]; char a[N]; bool vis[N]; int cmp(int x,int y) { ; ; ; } void dfs(int l,int r) { if (l>r) return; if (l==r) { if (vis[l]||vis[r]) return; if (a[l]=='(') printf("()"); else if (a[l]==')') printf("()"); else if (a[l]=='[') printf("[]"); else if (a[l]==']') printf("[]"); vis[l]=vis[r]=; return; } for (int i=l; i<r; i++) ][r]==f[l][r]) {dfs(l,i),dfs(i+,r); return;} if (cmp(l,r)) { vis[l]=vis[r]=; printf("%c",a[l]); dfs(l+,r-); printf("%c",a[r]); return; } } int main() { scanf(),n=strlen(a+); ) ; memset(f,,sizeof f); ; i<=n; i++) f[i][i]=; ; i<n; i++) )) f[i][i+]=; ]=; ; l<=n; l++) { ; i<=n-l+; i++) { ; ][j-]; ][j]); } } dfs(,n); cout<<endl; ; }
[poj P1141] Brackets Sequence的更多相关文章
- 区间DP POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29520 Accepted: 840 ...
- POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29502 Accepted: 840 ...
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- poj 1141 Brackets Sequence(区间DP)
题目:http://poj.org/problem?id=1141 转载:http://blog.csdn.net/lijiecsu/article/details/7589877 定义合法的括号序列 ...
- POJ 1141 Brackets Sequence(括号匹配二)
题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...
- POJ 1141 Brackets Sequence(DP)
题目链接 很早 很早之前就看过的一题,今天终于A了.状态转移,还算好想,输出路径有些麻烦,搞了一个标记数组的,感觉不大对,一直wa,看到别人有写直接输出的..二了,直接输出就过了.. #include ...
随机推荐
- Java发送邮件功能
package com.hd.all.test.testjava; import java.util.Properties; import javax.mail.Address; import jav ...
- data日期转化
eg: var time="2018-05-19T08:04:52.000+0000"; var d = new Date(time); var times=d.getF ...
- [转]有return的情况下try catch finally的执行顺序
结论: 1.不管有没有出现异常,finally块中代码都会执行: 2.当try和catch中有return时,finally仍然会执行: 3.finally是在return后面的表达式运算后执行的(此 ...
- cocos2d-x JS 各类点、圆、矩形之间的简单碰撞检测
这里总结了一下点.圆.矩形之间的简单碰撞检测算法 (ps:矩形不包括旋转状态) 点和圆的碰撞检测: 1.计算点和圆心的距离 2.判断点与圆心的距离是否小于圆的半 isCollision: functi ...
- python调用RPC接口
要调用RPC接口,python提供了一个框架grpc,这是google开源的 rpc相关文档: https://grpc.io/docs/tutorials/basic/python.html 需要安 ...
- Linux平台 Oracle 18c RAC安装Part1:准备工作
一.实施前期准备工作 1.1 服务器安装操作系统 1.2 Oracle安装介质 1.3 共享存储规划 1.4 网络规范分配 二.安装前期准备工作 2.1 各节点系统时间校对 2.2 各节点关闭防火墙和 ...
- sqlite数据库中为字段设置默认值为当前时间
开始 `creation_time` NUMERIC DEFAULT (datetime('now','localtime')), `update_time` NUMERIC DEFAULT (dat ...
- 基于注解的Spring事务配置
spring采用@Transactional注解进行事务申明,@Transactional既可以在方法上申明,也可以在类上申明,方法申明优先于类申明. 1.pom配置 包括spring核心包引入以及s ...
- C#计算两个时间年份月份差
C#计算两个时间年份月份差 https://blog.csdn.net/u011127019/article/details/79142612
- 生成树协议stp
生成树协议应用的原因是从逻辑上阻塞交换机在物理上形成的环路.大家都知道交换机工作在二层,也就是数据链路层,根据mac地址识别主机,对三层网络无法识别,因此交换机不能隔离广播.但是在日常的工作中,为了达 ...