[poj P1141] Brackets Sequence

Time Limit: 1000MS   Memory Limit: 65536K   Special Judge

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

Northeastern Europe 2001

括号匹配的变形题。

这题的范围,非常的适合区间dp。

那么我们来设计一个dp。设f[i][j]为将原串中i~j全部匹配好需要增加的字符数量。

则:

先赋值正无穷。

对于j-i+1==1 ---> f[i][j]=1

对于j-i+1==2 ---> f[i][j]=cmp(a[i],a[j])?0:2

对于j-i+1>=3 ---> f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]),if (cmp(a[i],a[j])) f[i][j]=min(f[i][j],f[i+1][j-1])

其中cmp代表两个字符是否匹配。

那么这样,就轻松计算出了f[1][n]。

这一题要让我们输出方案。

一般dp的题都可以用dfs递归输出方案。

具体实现应该很好想吧!但是有些细节和顺序容易搞错。

下面先给出几组数据(不一定完全相同,有spj没关系):

in1:

[]]]]

out1:

[][][][]

in2:

)))(((

out2:

()()()()()()

in3:

“空串”

out3:

“空串”

in4:

([][]([]()))[()]([])

out4:

([][]([]()))[()]([])

code:

 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #include<iostream>
 using namespace std;
 ;
 int n,f[N][N]; char a[N]; bool vis[N];
 int cmp(int x,int y) {
     ;
     ;
     ;
 }
 void dfs(int l,int r) {
     if (l>r) return;
     if (l==r) {
         if (vis[l]||vis[r]) return;
         if (a[l]=='(') printf("()"); else
         if (a[l]==')') printf("()"); else
         if (a[l]=='[') printf("[]"); else
         if (a[l]==']') printf("[]");
         vis[l]=vis[r]=;
         return;
     }
     for (int i=l; i<r; i++)
         ][r]==f[l][r]) {dfs(l,i),dfs(i+,r); return;}
     if (cmp(l,r)) {
         vis[l]=vis[r]=;
         printf("%c",a[l]);
         dfs(l+,r-);
         printf("%c",a[r]);
         return;
     }
 }
 int main() {
     scanf(),n=strlen(a+);
     ) ;
     memset(f,,sizeof f);
     ; i<=n; i++) f[i][i]=;
     ; i<n; i++)
         )) f[i][i+]=; ]=;
     ; l<=n; l++) {
         ; i<=n-l+; i++) {
             ;
             ][j-];
             ][j]);
         }
     }
     dfs(,n);
     cout<<endl;
     ;
 }

[poj P1141] Brackets Sequence的更多相关文章

  1. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  2. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  3. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  4. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  6. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  7. poj 1141 Brackets Sequence(区间DP)

    题目:http://poj.org/problem?id=1141 转载:http://blog.csdn.net/lijiecsu/article/details/7589877 定义合法的括号序列 ...

  8. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

  9. POJ 1141 Brackets Sequence(DP)

    题目链接 很早 很早之前就看过的一题,今天终于A了.状态转移,还算好想,输出路径有些麻烦,搞了一个标记数组的,感觉不大对,一直wa,看到别人有写直接输出的..二了,直接输出就过了.. #include ...

随机推荐

  1. JAVA-数据库之MySQL与JDBC驱动下载与安装

    相关资料:<21天学通Java Web开发> MySQL下载地址:https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.19-wi ...

  2. freeswitch的拨号规则配置

    当一个呼叫在ROUTING状态下达到命中拨号规则解析器时,相应的拨号规则就开始解析了.随着解析的进行,在xml文件中的符合条件的或标签中的指令形成一个指令表,安装到这个通道中. 你可以将拨号规则文件放 ...

  3. usermod - linux修改用户帐户信息

    usermod - 修改用户帐户信息 modify a user account usermod [options] user_name usermod 命令修改系统帐户文件来反映通过命令行指定的变化 ...

  4. armv8 memory translation

    AArch32,arm的32bit架构: AArch64,arm的64bit架构: ARMv8.2-LPA,是armv8.2中的新feature,扩大了IPA和PA的支持范围,从48bit扩展到52b ...

  5. CentOS 7 使用OwnCloud建立私有云储存网盘

    使用OwnCloud建立属于自己私有的云存储网盘 OwnCloud概述: OwnCloud 一款文件主机服务软件,就是我们平时使用的云存储,不过这是在自己主机的服务器上建立属于自己的私有云,OwnCl ...

  6. pascal中的xor,shr,shl,Int(),ArcTan(),copy,delete,pos和leftstr,RightStr等详解

    数学函数:Inc(i)使I:=I+1;Inc(I,b)使I:=I+b;Abs(x)求x的绝对值例:abs(-3)=3Chr(x)求编号x对应的字符. 例:Chr(65)=’A’chr(97)=’a’c ...

  7. Intellij IDEA junit 使用之org.junit不存在

    在IDEA里面已经新建好了一个类,并加入了内容,然后创建测试类,快捷键(Ctrl+Alt+T)或者如图右键 Goto Test 创建后运行报错: Error:(3, 24) java: 程序包org. ...

  8. Python数据分析Numpy库方法简介(三)

    补充: np.ceil()向上取整 3.1向上取整是4 np.floor()向下取整 数组名.resize((m,n)) 重置行列 基础操作 np.random.randn()符合正态分布(钟行/高斯 ...

  9. 一.rest-framework之版本控制 二、Django缓存 三、跨域问题 四、drf分页器 五、响应器 六、url控制器

    一.rest-framework之版本控制 1.作用 用于版本的控制 2.内置的版本控制 from rest_framework.versioning import QueryParameterVer ...

  10. JS(JavaScript)的初了解(更新中···)

    1.js介绍 Js全称叫javascript,但不是java,他不仅是是一门前台语言,经过发展,现在也是一门后台语言:而java是后台语言. Js作者是布兰登艾奇. 前台语言:运行在客户端的 后台语言 ...