Description

每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛 A 认为牛 B受欢迎。这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。

Input

第1行两个整数N,M;
接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)

Output

一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3

1 2

2 1

2 3

Sample Output

1

Hint

10%的数据N<=20,M<=50
30%的数据N<=1000,M<=20000
70%的数据N<=5000,M<=50000
100%的数据N<=10000,M<=50000

Solution

首先,如果数据很小的话可以用传递闭包对吧,但是N到了1e5就显然不行了。

显然如果在一个环里的各个点的传递是互达的,由此我们可以扩展到一个强连通分量也是这样。

于是我们就可以想到tarjan缩点。

缩完点后怎么办呢?愚蠢的我想到一个点的入度=点数-1就对答案产生贡献,显然是不对的(如 3->2->1)。

于是我第一遍只有70分,(这样都有70分可能是数据太水了)。

脑子不好使的我冒着被卡的风险在缩完点后使用传递闭包(不要问我为什么我这么喜欢传递闭包),居然过了!(可能是数据太水了)

然后我便看正解,发现果然还是大佬们聪明一点。

对于缩完点后的点x

i)如果出度!=0,那么肯定有没指向自己的点,(如果有指出去后又指回来肯定在连通分量内)

ii)如果出度==0,似乎这个连通分量内的点就是答案,但是如果有多个出度为0的点,就说明还有多个独立的区域,那也不行。

所以出度==0的点有且只有一个的时候即为答案

Code (传递闭包版)

 #include<set>
#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register int
#define rep(i,a,b) for(RG i=a;i<=b;i++)
#define per(i,a,b) for(RG i=a;i>=b;i--)
#define inf (1<<30)
#define maxn 10005
#define maxm 500005
#define add(x,y) e[++cnt].u=u,e[cnt].v=v,e[cnt].next=head[u],head[u]=cnt
using namespace std;
stack<int> stk;
set<int> st[maxn];
int n,m,cnt,id,sid,ans;
int head[maxn],scc[maxn],dfn[maxn],low[maxn],vis[maxn],ind[maxn],sz[maxn],oud[maxn];
int gra[][];
struct E{
int u,v,next;
}e[maxm];
inline int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void tarjan(int u,int fa)
{
low[u]=dfn[u]=++id;
stk.push(u);vis[u]=;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])
{
tarjan(v,u);low[u]=min(low[u],low[v]);
}
else if(vis[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++sid;int x;
do{
x=stk.top(),stk.pop();
vis[x]=,scc[x]=sid,sz[sid]++;
}while(x!=u);
}
} int main()
{
n=read(),m=read();
RG u,v;rep(i,,m) u=read(),v=read(),add(u,v);
rep(i,,n) if(!scc[i]) tarjan(i,);
rep(i,,cnt)
{
int x=scc[e[i].u],y=scc[e[i].v];
if(x!=y)
gra[x][y]=;
}
rep(k,,sid)
rep(i,,sid)
rep(j,,sid)
if(gra[i][k]&&gra[k][j])gra[i][j]=;
rep(i,,sid)
{
int flg=;
rep(j,,sid)
if(i!=j&&!gra[j][i]) flg=;
if(!flg) ans+=sz[i];
}
cout<<ans;
return ;
}

>>点击查看代码<<

 #include<set>
#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define RG register int
#define rep(i,a,b) for(RG i=a;i<=b;i++)
#define per(i,a,b) for(RG i=a;i>=b;i--)
#define inf (1<<30)
#define maxn 10005
#define maxm 500005
#define add(x,y) e[++cnt].u=u,e[cnt].v=v,e[cnt].next=head[u],head[u]=cnt
using namespace std;
stack<int> stk;
set<int> st[maxn];
int n,m,cnt,ccnt,id,sid,ans;
int head[maxn],hh[maxn],scc[maxn],dfn[maxn],low[maxn],vis[maxn],ind[maxn],sz[maxn],oud[maxn];
int gra[][];
struct E{
int u,v,next;
}e[maxm];
struct EE{
int v,next;
}edge[maxm];
inline int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void tarjan(int u,int fa)
{
low[u]=dfn[u]=++id;
stk.push(u);vis[u]=;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])
{
tarjan(v,u);low[u]=min(low[u],low[v]);
}
else if(vis[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++sid;int x;
do{
x=stk.top(),stk.pop();
vis[x]=,scc[x]=sid,sz[sid]++;
}while(x!=u);
}
} int main()
{
n=read(),m=read();
RG u,v;rep(i,,m) u=read(),v=read(),add(u,v);
rep(i,,n) if(!scc[i]) tarjan(i,);
rep(i,,cnt)
{
int x=scc[e[i].u],y=scc[e[i].v];
if(x!=y)
gra[x][y]=;
}
rep(k,,sid)
rep(i,,sid)
rep(j,,sid)
if(gra[i][k]&&gra[k][j])gra[i][j]=;
rep(i,,sid)
{
int flg=;
rep(j,,sid)
if(i!=j&&!gra[j][i]) flg=;
if(!flg) ans+=sz[i];
}
cout<<ans;
return ;

受欢迎的牛 [HAOI2006] [强连通] [传递闭包(划)]的更多相关文章

  1. BZOJ 1051:[HAOI2006]受欢迎的牛(强连通分量)

    受欢迎的牛Description每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么 ...

  2. 1051. [HAOI2006]受欢迎的牛【强连通分量】

    Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也 ...

  3. 受欢迎的牛[HAOI2006]

    --BZOJ1051 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 ​ 种关系是具有传递性的,如果A认为B受欢迎, ...

  4. BZOJ1051 [HAOI2006]受欢迎的牛 Tarjan 强连通缩点

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1051 题意概括 有n只牛,有m个羡慕关系. 羡慕关系具有传递性. 如果A羡慕B,B羡慕C,那么我们 ...

  5. 【题解】洛谷P2341 [HAOI2006]受欢迎的牛(强连通分量)

    洛谷P2341:https://www.luogu.org/problemnew/show/P2341 前言 这题看错题目 足足花了将近5小时提交了15次 在一位dalao的提醒下才AC了 记得要看清 ...

  6. 【BZOJ1051】1051: [HAOI2006]受欢迎的牛 tarjan求强连通分量+缩点

    Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认 ...

  7. 【强连通分量】Bzoj1051 HAOI2006 受欢迎的牛

    Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认 ...

  8. 【模板】Tarjan缩点,强连通分量 洛谷P2341 [HAOI2006]受欢迎的牛 [2017年6月计划 强连通分量01]

    P2341 [HAOI2006]受欢迎的牛 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的 ...

  9. bzoj1051 [HAOI2006]受欢迎的牛

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4773  Solved: 2541[Submit][Sta ...

随机推荐

  1. 解决h5网页微信分享链接不能显示缩略

    <script type="text/javascript" src="http://res.wx.qq.com/open/js/jweixin-1.2.0.js& ...

  2. js数字货币格式互转

    //将1,234,567.00转换为1234567.00 function moneyToNumValue(val) { var num = val.trim(); var ss = num.toSt ...

  3. 【BZOJ2298】[HAOI2011]problem a

    题解: 虽然也是个可以过得做法...但又没有挖掘到最简单的做法... 正解是发现这个东西等价于求不相交区间个数 直接按照右端点排序,然后贪心就可以O(n)过了 而我的做法是按照a排序(其实我是在模拟这 ...

  4. PHP Manager 安装失败的解决方法, PHP Manager 1.4 for IIS 10,经验证支持windows server 2016版本

    // 另有无需进行修改注册表的安装包,经测试最高支持Windows Server 2016 版本,下载地址如下: https://github.com/EnhWeb/PHPManager/tree/m ...

  5. MaterialEditText——Android Material Design EditText控件

    MaterialEditText是Android Material Design EditText控件.可以定制浮动标签.主要颜色.默认的错误颜色等. 随着 Material Design 的到来, ...

  6. python全栈开发day64-模板-变量和(.)的使用,filters和自定义filter

    一.上周内容回顾 day64 内容回顾: 1. 所有的django命令 1. 安装 pip install django==1.11.14 pip install -i 源 django==1.11. ...

  7. redcontrol for SL 中文化及样式选择

    app.xaml.cs public partial class App: Application    {        public App()        {            //指定t ...

  8. bat处理复制文件

    1.建bat文件自动执行复制,删除命令. 复制cd.dll文件至windows\system32的bat文件内容: @echo offset JtlDir=D:\apache-jmeter-3.0\t ...

  9. mysql-数据库管理安装

    第一节 数据库管理系统 相关网址:www.db-engines.com mysql站点:www.mysql.com mariadb.org   mariadb官方站点 数据库分类: 关系型数据库: o ...

  10. 数仓1.4 |业务数仓搭建| 拉链表| Presto

    电商业务及数据结构 SKU库存量,剩余多少SPU商品聚集的最小单位,,,这类商品的抽象,提取公共的内容 订单表:周期性状态变化(order_info) id 订单编号 total_amount 订单金 ...