看一个预测的代码,在预处理数据的时候使用了svd。了解了一下svd相关资料,比较喜欢第一篇文章的解释,不过第二篇也很简单。

https://blog.csdn.net/ab_use/article/details/50433635

https://cosx.org/2014/02/svd-and-image-compression

在论述UDV的维度的时候,两篇文章由不一致的地方。

一种说法是U是一个mxm的矩阵,D是mxn矩阵,V是nxn矩阵。

另一种说法是U是一个mxn矩阵,D是nxn矩阵,V是nxn矩阵。

两种说法其实都对,第二版是第一版的简化。因为D的特性,使得D右下角的行(或列)为0(第一篇文章有显示),所以实际上有效的维度只有min(m, n), 因为有假设m > n, 所以这里取n。同时,U左乘到D,因此 > n 的部分为0。由此可以将UD从mxm %*% mxn 简化成mxn %*% nxn的形式。

SVD的有效的一个重要特征在于,分解得到的D矩阵,其对角线上的值是降序排列的。至于为什么是降序的,这里应该有证明 A singularly valuable decomposition: the SVD of a matrix (我没看)

将D矩阵尾部贡献量较小的特征值丢弃之后,即可得到对源矩阵的一个近似拟合,这个拟合包含了原矩阵绝大部分的信息。因此SVD可以应用于数据压缩及过滤噪声等。

s== 分割线  等待整理笔记 ==

[数学] 奇异值分解SVD的理解与应用的更多相关文章

  1. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  2. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  3. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  5. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  6. 数学基础系列(六)----特征值分解和奇异值分解(SVD)

    一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...

  7. 矩阵奇异值分解(SVD)及其应用

    机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题

  8. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  9. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

随机推荐

  1. java基础概念整理(三)

    1.对象的上转型 对象的上转型不能调用和使用子类对象新增的成员和变量,不能调用子类新增的方法. 上转型对象可以访问子类继承或者隐藏的成员变量,也可以调用子类继承或者子类重写的实例方法.因此如果子类重写 ...

  2. 修改jenkins发布账号信息

  3. python提取文件中的方法名称

    #提取文件中的方法名称 # -*- coding:utf-8 -*- def Query_Method(filepath): file = open(filepath,'r',encoding= 'U ...

  4. sqoop无法导出parquet文件到mysql

    1.问题描述 在CDH集群中我们需要将Hive表的数据导入到RDBMS数据库中,使用Sqoop工具可以方便的将Hive表数据抽取到RDBMS数据库中,在使用Sqoop抽取Hive Parquet表时作 ...

  5. jQuery常见案例

    jQuery常见案例 通过jQuery实现全选,反选取消: 选择 地址 端口 1.1.1.1 80 1.1.1.1 80 1.1.1.1 80 1.1.1.1 80 代码实现 <body> ...

  6. KnockoutJs学习笔记(三)

    之前的文章主要针对的是单一的observable(即便是observableArray也是一种observable),而文档Using computed observables则主要是针对ko.com ...

  7. [转] 那些在使用webpack时踩过的坑

    用webpack的过程,就是一个不断入坑和出坑的过程.回望来时路,一路都是坑啊!现把曾经趟过的那些坑整理出来,各位看官有福了~ 文章末尾有我用到的依赖的版本信息,若你发现某个问题与我在本文中的描述不一 ...

  8. 【bzoj4887】[Tjoi2017]可乐 矩阵乘法

    题解: 比较简单的一道题目 如果会倍增floyd这个就很显然的 每次转移看成乘上一个矩阵 另外自爆等同于连到一个特殊点,特殊点只能走自己 停留就是增加自环

  9. sparkSQL将谓词推入kudu引擎

    kudu之所以执行非常快速,可以用来替代HDFS和Hbase等,一个主要原因是,我们可以将普通SQL中的谓词推入kudu引擎,这样kudu查询数据会变的非常快: 将谓词评估推入Kudu引擎可以提高性能 ...

  10. js前端ajax提交list集合参数至后端

    var orderNosList = new Array(); var rows = $("#dg_linkOrder").datagrid("getChecked&qu ...