看一个预测的代码,在预处理数据的时候使用了svd。了解了一下svd相关资料,比较喜欢第一篇文章的解释,不过第二篇也很简单。

https://blog.csdn.net/ab_use/article/details/50433635

https://cosx.org/2014/02/svd-and-image-compression

在论述UDV的维度的时候,两篇文章由不一致的地方。

一种说法是U是一个mxm的矩阵,D是mxn矩阵,V是nxn矩阵。

另一种说法是U是一个mxn矩阵,D是nxn矩阵,V是nxn矩阵。

两种说法其实都对,第二版是第一版的简化。因为D的特性,使得D右下角的行(或列)为0(第一篇文章有显示),所以实际上有效的维度只有min(m, n), 因为有假设m > n, 所以这里取n。同时,U左乘到D,因此 > n 的部分为0。由此可以将UD从mxm %*% mxn 简化成mxn %*% nxn的形式。

SVD的有效的一个重要特征在于,分解得到的D矩阵,其对角线上的值是降序排列的。至于为什么是降序的,这里应该有证明 A singularly valuable decomposition: the SVD of a matrix (我没看)

将D矩阵尾部贡献量较小的特征值丢弃之后,即可得到对源矩阵的一个近似拟合,这个拟合包含了原矩阵绝大部分的信息。因此SVD可以应用于数据压缩及过滤噪声等。

s== 分割线  等待整理笔记 ==

[数学] 奇异值分解SVD的理解与应用的更多相关文章

  1. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  2. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  3. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  5. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  6. 数学基础系列(六)----特征值分解和奇异值分解(SVD)

    一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...

  7. 矩阵奇异值分解(SVD)及其应用

    机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题

  8. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  9. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

随机推荐

  1. php 统计某个目录中所有文件的大小

    /** * @Purpose : 利用递归的方式统计目录的大小 * @Author : chrdai * @Method Name : dirSize() * @parameter : string ...

  2. poj2817状态压缩 升维

    /* 两两求出字符串之间最大可以匹配的值 由已知状态推导出位置状态 状态s表示已经加入到集合中的字符串,0表示串i不存在,1存在 由于字符串的加入顺序会影响结果,所以增加一维来表示 dp[S][i]表 ...

  3. G: Dave的时空迷阵(next数组)

    G: Dave的时空迷阵 Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description 皇家理工本部隐藏 ...

  4. Redis托管Session

    一:redis托管session主要是为了不同域之间共享session.Asp.net提供了四种处理Session的方法 1.  InProc模式 这是ASP.NET默认的Session管理模式,在应 ...

  5. SqlServerHelp

    using System; using System.Collections.Generic; using System.Reflection; using System.Text; using Sy ...

  6. 源码编译安装net-snmp

    https://blog.csdn.net/u013992330/article/details/79712405 https://wenku.baidu.com/view/24368a2257125 ...

  7. JavaScript学习:取数组中最大值和最小值

    在实际业务中有的时候要取出数组中的最大值或最小值.但在数组中并没有提供arr.max()和arr.min()这样的方法.那么是不是可以通过别的方式实现类似这样的方法呢?那么今天我们就来整理取出数组中最 ...

  8. SignalRMvc的简单例子

    1.介绍 我们知道传统的http采用的是“拉模型”,也就是每次请求,每次断开这种短请求模式,这种场景下,client是老大,server就像一个小乌龟任人摆布,很显然,只有一方主动,这事情就没那么完美 ...

  9. [转] js对象监听实现

    前言 随着前端交互复杂度的提升,各类框架如angular,react,vue等也层出不穷,这些框架一个比较重要的技术点就是数据绑定.数据的监听有较多的实现方案,本文将粗略的描述一番,并对其中一个兼容性 ...

  10. 开源CMS系统Moodle对比中国本土化开源在线教育平台EduSoho

    这段时间研究了一下著名的开源课程管理系统Moodle,也了解了一下目前国内比较火的在线教育平台EduSoho,发现二者有诸多相似之处,但优势各异.接下来就简单对着两个平台做一下对比. 首先来说一下Ed ...