看一个预测的代码,在预处理数据的时候使用了svd。了解了一下svd相关资料,比较喜欢第一篇文章的解释,不过第二篇也很简单。

https://blog.csdn.net/ab_use/article/details/50433635

https://cosx.org/2014/02/svd-and-image-compression

在论述UDV的维度的时候,两篇文章由不一致的地方。

一种说法是U是一个mxm的矩阵,D是mxn矩阵,V是nxn矩阵。

另一种说法是U是一个mxn矩阵,D是nxn矩阵,V是nxn矩阵。

两种说法其实都对,第二版是第一版的简化。因为D的特性,使得D右下角的行(或列)为0(第一篇文章有显示),所以实际上有效的维度只有min(m, n), 因为有假设m > n, 所以这里取n。同时,U左乘到D,因此 > n 的部分为0。由此可以将UD从mxm %*% mxn 简化成mxn %*% nxn的形式。

SVD的有效的一个重要特征在于,分解得到的D矩阵,其对角线上的值是降序排列的。至于为什么是降序的,这里应该有证明 A singularly valuable decomposition: the SVD of a matrix (我没看)

将D矩阵尾部贡献量较小的特征值丢弃之后,即可得到对源矩阵的一个近似拟合,这个拟合包含了原矩阵绝大部分的信息。因此SVD可以应用于数据压缩及过滤噪声等。

s== 分割线  等待整理笔记 ==

[数学] 奇异值分解SVD的理解与应用的更多相关文章

  1. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  2. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  3. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  5. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  6. 数学基础系列(六)----特征值分解和奇异值分解(SVD)

    一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...

  7. 矩阵奇异值分解(SVD)及其应用

    机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题

  8. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  9. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

随机推荐

  1. python网络爬虫笔记(二)

    一.函数调用的默认设置 1.def enroll(name,grnder,age=4,city='Shanghai'): print (''name:',name) print (''gender', ...

  2. 第七周学习总结-C#

    2018年8月26日 这个周二突然得知另一位老师留的暑假作业,群文件里早就上传了,我居然一直没翻到那里,要不是同学问作业做完没,我可能开学就要“真●裸考”了

  3. Jmeter 自动化测试报告扩展

    首先了解下生成测试报告的过程,我们看到的测试报告是由.jtl格式转换为.html,html报告的样式由extras目录下xsl文件决定.优化测试报告需要分为两部分内容,首先我们要优化输出的测试内容,其 ...

  4. Unnamed namespaces

    Unnamed namespaces The unnamed-namespace-definition is a namespace definition of the form   inline(o ...

  5. ORA-12519 ORA-12516

    目录: 错误信息 原因分析 解决方法 1. 错误信息 [oracle@test1 admin]$ oerr ora , , "TNS:no appropriate service handl ...

  6. Python函数之递归函数

    递归函数的定义:在这个函数里再调用这个函数本身 最大递归深度默认是997或者998,python从内存角度做的限制 优点:代码变简单 缺点:占内存 一:推导年龄 问a的值是多少: a 比 b 小2,b ...

  7. js cookie 工具

    var CookieUtil = { get: function(name) { var cookieName = encodeURIComponent(name) + "=", ...

  8. sqoop无法导出parquet文件到mysql

    1.问题描述 在CDH集群中我们需要将Hive表的数据导入到RDBMS数据库中,使用Sqoop工具可以方便的将Hive表数据抽取到RDBMS数据库中,在使用Sqoop抽取Hive Parquet表时作 ...

  9. Django-model基础

    Django-model基础 在Django-ORM中表和类存在映射关系 表名<------------>类名 字段<------------>属性 表记录<------ ...

  10. mysql如何在一张表中插入一万条数据?(用存储过程解决)

    写一个存储过程,里面写一个循环,就可以了.主键你现在不是自增的,所以写语句的时候,就Insert到3个字段中. DELIMITER $$ DROP PROCEDURE IF EXISTS `proc_ ...