这还是一道综合了许多数论的知识点的,做完也涨了不少姿势

但还是因为约数和公式这个鬼东西去找了度娘

题意很简单,就是求\(A^B\)的约数之和\(mod\ 9901\)。

但是这种题意越是简单的题目越是坑人

首先如果你不知道约数和公式就绝逼GG,然后由于有唯一分解定理这种东西撑腰,我们选择直接用公式.

先分解质因数得到\(n\)个质因数\(p_i\)和它们出现的次数\(t_i\),然后约数和:

\(\prod_{i=1}^{n} \sum_{j=0}^{t[i]} {p_i}^j\)

然后我们考虑如何处理那个\(\sum_{j=0}^{t} {p}^j\)

首先我们可以发现这是一个等比数列,然后我们来对它进行转化,我们设\(S=\sum_{j=0}^{t} {p}^j ......(1)\),则有

\(pS=\sum_{j=1}^{t+1} {p}^j ......(2)\)

我们\((2)-(1)\)得

\((p-1)S=p^{t+1}-1\)

\(S=\frac{p^{t+1}-1}{p-1}\)

所以我们上面用快速幂,下面用逆元即可,然后就解决了

但其实这道题的坑点让人难以想象:

  1. 当\(9901\mid p-1\)时不能用逆元,要特殊处理
  2. 因为这道题的次数不能取模,所以要涉及到两个long long的数相乘,但是由于取模所以不用高精,所以我们用二进制的方法(其实就是和快速幂一样的思想)来做快速乘
  3. 分解质因数的时候这个数可能本身就是质数(这个比较经典)

然后我们就可以艹过去了

CODE

#include<cstdio>
using namespace std;
typedef long long LL;
const LL S_N=10005,mod=9901;
LL a,b,prime[S_N],t[S_N],ex,cnt,ans=1;
bool vis[S_N];
inline void Euler(LL m)
{
register LL i,j; vis[1]=1;
for (i=2;i<m;++i)
{
if (!vis[i]) prime[++cnt]=i;
for (j=1;j<=cnt&&i*prime[j]<m;++j)
{
vis[i*prime[j]]=1;
if (!(i%prime[j])) break;
}
}
}
inline void resolve(LL x)
{
register LL i;
for (i=1;i<=cnt;++i)
{
while (!(x%prime[i])) x/=prime[i],++t[i];
if (!(x^1)) break;
}
if (x^1) ex=x;
}
inline LL quick_mul(LL x,LL y,LL mod)
{
LL tot=0;
while (y)
{
if (y&1) tot=(tot+x)%mod;
x=(x<<1)%mod; y>>=1;
}
return tot;
}
inline LL quick_pow(LL x,LL p,LL mod)
{
LL tot=1;
while (p)
{
if (p&1) tot=quick_mul(tot,x,mod);
x=quick_mul(x,x,mod); p>>=1;
}
return tot;
}
inline LL inv(LL x)
{
return quick_pow(x,mod-2,mod);
}
inline LL calc(LL p,LL t)
{
return (((quick_pow(p,t,mod)-1+mod)%mod)*inv(p-1))%mod;
}
int main()
{
Euler(S_N); scanf("%lld%lld",&a,&b); resolve(a);
for (register LL i=1;i<=cnt;++i)
if (t[i])
{
if ((prime[i]-1)%mod) ans=(ans*calc(prime[i],t[i]*b+1))%mod;
else ans=(ans*quick_pow(prime[i],t[i]*b+1,mod*(prime[i]-1))/(prime[i]-1))%mod;
}
if (ex)
{
if ((ex-1)%mod) ans=(ans*calc(ex,b+1))%mod;
else ans=(ans*quick_pow(ex,b+1,mod*(ex-1))/(ex-1))%mod;
}
printf("%lld",ans);
return 0;
}

POJ1845的更多相关文章

  1. poj1845 Sumdiv

    poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...

  2. poj1845(逆元+快速幂)

    题目链接:https://vjudge.net/problem/POJ-1845 题意:求A的B次方的所有因子(包括1)的和对9901的模. 思路:首先对A利用唯一分解定理得A=p1x1*p2x2*. ...

  3. POJ-1845 Sumdiv---因子和(快速幂+快速加法+因子和公式)

    题目链接: https://cn.vjudge.net/problem/POJ-1845 题目大意: 求AB的因子和 解题思路: 先将A质因数分解,然后B次方的质因数指数就是乘上B即可 这里要mod9 ...

  4. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  5. [POJ1845&POJ1061]扩展欧几里得应用两例

    扩展欧几里得是用于求解不定方程.线性同余方程和乘法逆元的常用算法. 下面是代码: function Euclid(a,b:int64;var x,y:int64):int64; var t:int64 ...

  6. 【POJ1845】Sumdiv(数论/约数和定理/等比数列二分求和)

    题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\ ...

  7. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

  8. POJ1845 Sumdiv(求所有因数和+矩阵快速幂)

    题目问$A^B$的所有因数和. 根据唯一分解定理将A进行因式分解可得:A = p1^a1 * p2^a2 * p3^a3 * pn^an.A^B=p1^(a1*B)*p2^(a2*B)*...*pn^ ...

  9. poj1845 数论

    //Accepted 204K 16MS //约数和 //n=p1^e1*p2^e2***pk^ek //约数和为:(p1^0+p1^1+..+p1^e1)*(p2^0+p2^1+..+p2^e2)* ...

  10. POJ1845 数论 二分快速取余

    大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路: 应用定理主要有三个: (1)   整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. ...

随机推荐

  1. 《Inside C#》笔记(十二) 委托与事件

    C#的委托与C++的函数指针类似,但委托是类型安全的,意味着指针始终会指向有效的函数.委托的使用主要有两种:回调和事件. 一 将委托作为回调函数 在需要给一个函数传递一个函数指针,随后通过函数指针调用 ...

  2. vmare连接远程服务器的问题

    测试环境:两端都是VMware Workstation 12 Pro 1.需要共享虚拟机 在虚拟机上点击右键 -> Manage -> Share 后面按照操作设置 2.远程服务器的443 ...

  3. pandas的resample重采样

    Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法. 降采样:高频数据到低频数据 升采样:低频数据到高频数据 主要函数:r ...

  4. 如何以SYSTEM用户运行CMD

    有的时候有些文件在管理员账户不能删除,这个时候需要在SYSTEM用户下删除. 可以通过以SYSTEM权限运行CMD来删除某些文件或目录的目的. 1. 从微软网站下载PSTool. 2. 以管理员运行C ...

  5. Linux 小知识翻译 - 「克隆」

    最近比较流行的Linux发行版,得是连新闻都报道的,刚刚发布新版的「CentOS」了. 「CentOS」一般被称为Red Hat EnterpriseLinux的克隆版本,这是什么意思呢? Linux ...

  6. 英语初级学习系列-00-Name-介绍自己

    1. 询问名字 常用句子 1. Hi, may I have your name, please? 2. Could you please tell me your name? 3. Will it ...

  7. Team Dipper

    Team Dipper Dipper 来自追梦的7星,We Are From Now On! 说什么?图小了?没问题满足你! No.1 沉默深邃之境的术士,源自奥术之境的PHP探寻者 03150225 ...

  8. Android Studio 学习Demo内容及一些bug处理技巧 -----个人技术文档,两次冲刺总结

    实现的基本内容 1.基本界面的注册(包括转换界面,隐式,显式注册,主界面的入口注册) 2.匿名内部类实现Button按钮的监听事件,并通过Toast进行显示 3.界面切换(显式.隐式) 4.调用浏览器 ...

  9. python五十五课——calendar模块

    4.calendar模块: 构造:calendar(year,[w=2,l=1,c=6]):返回year年的完整的日历信息对象 和闰年相关的函数如下: isleap(year):判断year是否是闰年 ...

  10. [CQOI2014]排序机械臂

    嘟嘟嘟 最近复习复习平衡树,然后又体会到了那种感觉:"写代码半小时,debug一下午". 这题其实就是让你搞一个数据结构,支持一下操作: 1.区间翻转. 2.查询区间最小值所在位置 ...