Bezier曲线原理—动态解释
公式
线性公式
给定点P0、P1,线性贝兹曲线只是一条两点之间的直线。且其等同于线性插值。这条线由下式给出:
此会得到多个点的坐标,其实这些的点就是一条直线上的点。
B(t) = P0 + (P1-P0)*t
B(t) = (1-t)P0 + tP1
//=>
B(t).x = (1-t)P0.x + tP1.x
B(t).y = (1-t)P0.y + tP1.y
二次方公式
二次方贝兹曲线的路径由给定点P0、P1、P2的函数B(t)追踪:
TrueType字型就运用了以贝兹样条组成的二次贝兹曲线。
二阶贝赛尔曲线由`3`个点确定,它可以理解成是这样的一阶贝赛尔曲线:确定该`一阶贝赛尔曲线`的两个点是变化的。
这两个点(设分别为Pm,Pn)是怎样变化的呢,这两个点又分别是(P0,P1)确定的`一阶贝赛尔曲线`和(P1,P2)确定的`一阶贝赛尔`
曲线上的点。
于是有了2阶贝赛尔曲线的公式
Pm(t) = (1-t)P0 + tP1
Pn(t) = (1-t)P1 + tP2
B(t) = (1-t)Pm(t) + tPn(t)
= (1-t)^2 P0 + 2(1-t)tP1+ t^2P2
三次方公式
P0、P1、P2、P3四个点在平面或在三维空间中定义了三次方贝兹曲线。曲线起始于P0走向P1,并从P2的方向来到P3。一般不会经过P1或P2;这两个点只是在那里提供方向资讯。P0和P1之间的间距,决定了曲线在转而趋进P3之前,走向P2方向的“长度有多长”。
曲线的参数形式为:
现代的成象系统,如PostScript、Asymptote和Metafont,运用了以贝兹样条组成的三次贝兹曲线,用来描绘曲线轮廓。
四次方图:
一般参数公式
阶贝兹曲线可如下推断。给定点P0、P1、…、Pn,其贝兹曲线即:
如上公式可如下递归表达: 用表示由点P0、P1、…、Pn所决定的贝兹曲线。
用平常话来说,阶的贝兹曲线,即双阶贝兹曲线之间的插值。
公式说明
1.开始于P0并结束于Pn的曲线,即所谓的端点插值法属性。
2.曲线是直线的充分必要条件是所有的控制点都位在曲线上。同样的,贝塞尔曲线是直线的充分必要条件是控制点共线。
3.曲线的起始点(结束点)相切于贝塞尔多边形的第一节(最后一节)。
4.一条曲线可在任意点切割成两条或任意多条子曲线,每一条子曲线仍是贝塞尔曲线。
5.一些看似简单的曲线(如圆)无法以贝塞尔曲线精确的描述,或分段成贝塞尔曲线(虽然当每个内部控制点对单位圆上的外部控制点水平或垂直的的距离为时,分成四段的贝兹曲线,可以小于千分之一的最大半径误差近似于圆)。
6.位于固定偏移量的曲线(来自给定的贝塞尔曲线),又称作偏移曲线(假平行于原来的曲线,如两条铁轨之间的偏移)无法以贝兹曲线精确的形成(某些琐屑实例除外)。无论如何,现存的启发法通常可为实际用途中给出近似值。
Bezier曲线原理—动态解释的更多相关文章
- Bezier曲线的原理 及 二次Bezier曲线的实现
原文地址:http://blog.csdn.net/jimi36/article/details/7792103 Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线.曲线由顶点和控制点组成 ...
- Spring的IOC原理[通俗解释一下]
Spring的IOC原理[通俗解释一下] 1. IoC理论的背景我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图 ...
- Hibernate学习--hibernate延迟加载原理-动态代理(阿里电面)
在正式说hibernate延迟加载时,先说说一个比较奇怪的现象吧:hibernate中,在many-to-one时,如果我们设置了延迟加载,会发现我们在eclipse的调试框中查看one对应对象时,它 ...
- 连续bezier曲线的实现
需求场景 一系列的坐标点,划出一条平滑的曲线 3次Bezier曲线 基本上大部分绘图工具都实现了3次Bezier曲线,4个点确定一条3次Bezier曲线.以html5中的canvas为例 let ct ...
- 图像处理中的数学原理具体解释21——PCA实例与图像编码
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/ar ...
- 实验6 Bezier曲线生成
1.实验目的: 了解曲线的生成原理,掌握几种常见的曲线生成算法,利用VC+OpenGL实现Bezier曲线生成算法. 2.实验内容: (1) 结合示范代码了解曲线生成原理与算法实现,尤其是Bezier ...
- 简单而粗暴的方法画任意阶数Bezier曲线
简单而粗暴的方法画任意阶数Bezier曲线 虽然说是任意阶数,但是嘞,算法原理是可以到任意阶数,计算机大概到100多阶就会溢出了 Bezier曲线介绍] [本文代码] 背景 在windows的Open ...
- [摘抄] Bezier曲线、B样条和NURBS
Bezier曲线.B样条和NURBS,NURBS是Non-Uniform Rational B-Splines的缩写,都是根据控制点来生成曲线的,那么他们有什么区别了?简单来说,就是: Bezier曲 ...
- C# 实现Bezier曲线(vs2008)
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
随机推荐
- Codeforces Round #279 (Div. 2) B. Queue
B. Queue time limit per test 2 seconds memory limit per test 256 megabytes input standard input outp ...
- ZOJ 2599 Graduated Lexicographical Ordering ★(数位DP)
题意 定义两个数的比较方法,各位数字之和大的数大,如果数字和相等则按字典序比较两个数的大小.输入n,k,求:1.数字k的排名:2.排名为k的数. 思路 算是一类经典的统计问题的拓展吧~ 先来看第一问. ...
- 三大平衡树(Treap + Splay + SBT)总结+模板
Treap树 核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn) Treap模板: #include <cstdio> #include <cstring> #i ...
- Python执行Linux系统命令方法
Python执行Linux系统命令的4种方法 (1) os.system 仅仅在一个子终端运行系统命令,而不能获取命令执行后的返回信息 复制代码代码如下: system(command) -> ...
- fegin--调用超时设置
Feign请求超时问题 Hystrix默认的超时时间是1秒,如果超过这个时间尚未响应,将会进入fallback代码.而首次请求往往会比较慢(因为Spring的懒加载机制,要实例化一些类),这个响应时间 ...
- CI框架CodeIgniter伪静态各种服务器设置
Apache服务器.htaccess伪静态设置 RewriteEngine on RewriteCond $1 !^(index\\.php|system\\.php|images|skin|js|l ...
- 【javascript基础】JS计算字符串所占字节数
废话不说,直接正题吧. 最近项目有个需求要用js计算一串字符串写入到localStorage里所占的内存,众所周知的,js是使用Unicode编码的.而Unicode的实现有N种,其中用的最多的就是U ...
- ECMAScript 6.0 学习笔记
1.ECMAScript 6.0(也就是ES2015 以下简称 ES6)是 JavaScript 语言的下一代标准,已经在2015年6月正式发布了.它的目标,是使得 JavaScript 语言可以用来 ...
- Linux:join命令详解
join 处理两个文件之间的数据,并且将两个文件中有相同的数据的那一行加在一起 语法 join(选项)(file1 file2) 选项 -a<1或2>:除了显示原来的输出内容之外,还显示指 ...
- 微信小程序之答题领券系统构建
这个项目做了有一段时间了,客户需求反复更改,所以版本也是在不断迭代,下面简要说明一下这个系统的构建过程吧 系统功能: 1.基于商城系统开发的商品答题领券功能 2.首页商品列表页显示当前商品的答题状态 ...