Bezier曲线原理—动态解释
公式
线性公式
给定点P0、P1,线性贝兹曲线只是一条两点之间的直线。且其等同于线性插值。这条线由下式给出:
此会得到多个点的坐标,其实这些的点就是一条直线上的点。
B(t) = P0 + (P1-P0)*t
B(t) = (1-t)P0 + tP1
//=>
B(t).x = (1-t)P0.x + tP1.x
B(t).y = (1-t)P0.y + tP1.y
二次方公式
二次方贝兹曲线的路径由给定点P0、P1、P2的函数B(t)追踪:
TrueType字型就运用了以贝兹样条组成的二次贝兹曲线。
二阶贝赛尔曲线由`3`个点确定,它可以理解成是这样的一阶贝赛尔曲线:确定该`一阶贝赛尔曲线`的两个点是变化的。
这两个点(设分别为Pm,Pn)是怎样变化的呢,这两个点又分别是(P0,P1)确定的`一阶贝赛尔曲线`和(P1,P2)确定的`一阶贝赛尔`
曲线上的点。
于是有了2阶贝赛尔曲线的公式
Pm(t) = (1-t)P0 + tP1
Pn(t) = (1-t)P1 + tP2
B(t) = (1-t)Pm(t) + tPn(t)
= (1-t)^2 P0 + 2(1-t)tP1+ t^2P2
三次方公式
P0、P1、P2、P3四个点在平面或在三维空间中定义了三次方贝兹曲线。曲线起始于P0走向P1,并从P2的方向来到P3。一般不会经过P1或P2;这两个点只是在那里提供方向资讯。P0和P1之间的间距,决定了曲线在转而趋进P3之前,走向P2方向的“长度有多长”。
曲线的参数形式为:
现代的成象系统,如PostScript、Asymptote和Metafont,运用了以贝兹样条组成的三次贝兹曲线,用来描绘曲线轮廓。
四次方图:
一般参数公式
阶贝兹曲线可如下推断。给定点P0、P1、…、Pn,其贝兹曲线即:
如上公式可如下递归表达: 用表示由点P0、P1、…、Pn所决定的贝兹曲线。
用平常话来说,阶的贝兹曲线,即双阶贝兹曲线之间的插值。
公式说明
1.开始于P0并结束于Pn的曲线,即所谓的端点插值法属性。
2.曲线是直线的充分必要条件是所有的控制点都位在曲线上。同样的,贝塞尔曲线是直线的充分必要条件是控制点共线。
3.曲线的起始点(结束点)相切于贝塞尔多边形的第一节(最后一节)。
4.一条曲线可在任意点切割成两条或任意多条子曲线,每一条子曲线仍是贝塞尔曲线。
5.一些看似简单的曲线(如圆)无法以贝塞尔曲线精确的描述,或分段成贝塞尔曲线(虽然当每个内部控制点对单位圆上的外部控制点水平或垂直的的距离为时,分成四段的贝兹曲线,可以小于千分之一的最大半径误差近似于圆)。
6.位于固定偏移量的曲线(来自给定的贝塞尔曲线),又称作偏移曲线(假平行于原来的曲线,如两条铁轨之间的偏移)无法以贝兹曲线精确的形成(某些琐屑实例除外)。无论如何,现存的启发法通常可为实际用途中给出近似值。
Bezier曲线原理—动态解释的更多相关文章
- Bezier曲线的原理 及 二次Bezier曲线的实现
原文地址:http://blog.csdn.net/jimi36/article/details/7792103 Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线.曲线由顶点和控制点组成 ...
- Spring的IOC原理[通俗解释一下]
Spring的IOC原理[通俗解释一下] 1. IoC理论的背景我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图 ...
- Hibernate学习--hibernate延迟加载原理-动态代理(阿里电面)
在正式说hibernate延迟加载时,先说说一个比较奇怪的现象吧:hibernate中,在many-to-one时,如果我们设置了延迟加载,会发现我们在eclipse的调试框中查看one对应对象时,它 ...
- 连续bezier曲线的实现
需求场景 一系列的坐标点,划出一条平滑的曲线 3次Bezier曲线 基本上大部分绘图工具都实现了3次Bezier曲线,4个点确定一条3次Bezier曲线.以html5中的canvas为例 let ct ...
- 图像处理中的数学原理具体解释21——PCA实例与图像编码
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/ar ...
- 实验6 Bezier曲线生成
1.实验目的: 了解曲线的生成原理,掌握几种常见的曲线生成算法,利用VC+OpenGL实现Bezier曲线生成算法. 2.实验内容: (1) 结合示范代码了解曲线生成原理与算法实现,尤其是Bezier ...
- 简单而粗暴的方法画任意阶数Bezier曲线
简单而粗暴的方法画任意阶数Bezier曲线 虽然说是任意阶数,但是嘞,算法原理是可以到任意阶数,计算机大概到100多阶就会溢出了 Bezier曲线介绍] [本文代码] 背景 在windows的Open ...
- [摘抄] Bezier曲线、B样条和NURBS
Bezier曲线.B样条和NURBS,NURBS是Non-Uniform Rational B-Splines的缩写,都是根据控制点来生成曲线的,那么他们有什么区别了?简单来说,就是: Bezier曲 ...
- C# 实现Bezier曲线(vs2008)
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
随机推荐
- thinkphp 模板中得到controller name,得到当前文件路径
<li><a href="/Admin/account" <eq name="Think.CONTROLLER_NAME" value= ...
- 最优化问题 Optimization Problems & 动态规划 Dynamic Programming
2018-01-12 22:50:06 一.优化问题 优化问题用数学的角度来分析就是去求一个函数或者说方程的极大值或者极小值,通常这种优化问题是有约束条件的,所以也被称为约束优化问题. 约束优化问题( ...
- Selenium元素定位问题
定位元素时,遇到一些诡异事件: 明明就是通过ID定位的,但是就是没有定位到该元素呢? 1.通过element.find_elements_by_xxx()获取该元素的个数,试试是否有获取到元素,0个表 ...
- HTTP Methods: GET vs. POST
Two commonly used methods for a request-response between a client and server are: GET and POST. GET ...
- 修改tomcat默认端口号8080
1.背景 在默认情况下,tomcat的端口是8080,使用了两个tomcat,那么就需要修改其中的一个的端口号才能使得两个同时工作. 2.方法 2.1改动一 那么,如何修改tomcat的端口号呢?首先 ...
- HDU-4679-树的直径(树形dp)
Terrorist’s destroy Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- iOS自动化探索(七)自动化测试框架pytest - 测试报告
这里我们单独来看下关于如何生存测试报告 准备测试代码如下: #coding: utf- import pytest @pytest.fixture() def login(): print '输入账号 ...
- 015——数组(十五)sort natsort shuffle natcasesoft array_multisort
<?php /*数组排序函数 * sort natsort shuffle natcasesoft array_multisort */ //sort() 对数组元素进行递增的排序, /*$ar ...
- kvm虚拟机克隆注意点
1.硬盘空间会受第一次分配硬盘是的max capacity(最大容量) 限制,如果额外添加一块硬盘,会多出一个img文件,克隆这种虚拟机,两个img文件会都克隆下来,如果不重新命名会在原先img文件后 ...
- C#学习历程(三)[基础概念]
>>简单描述OOP 面向对象编程是由面向过程编程发展而来,不再注重于具体的步骤,而是更多的聚焦于对象. 以对象为载体,然后去完善对象的特点(属性),然后实现对象的具体的功能,同时处理对象与 ...