和两天做了两道数据结构优化dp的题,套路还是差不多的

题解链接! https://www.cnblogs.com/kls123/p/11221471.html

一些补充

其实这道题的dp[i]维护的不是每个点,而是每个离散化的y,也可以理解为当前折线停留在纵坐标为y的答案

从左往右,从上往下进行遍历点,对于每个点p[i]考虑三种情况:

1.折线经过这个点,那么这条折线必定从小于等于p[i].y的地方折上来的,所以查询一段区间的极值即可

2.折线在这个点上面,那么通过这个点去更新那些在其上面的折线值即可

3.折线在点下面,和2同理

此外,由于折线可能是直接从y=0折上来的,所以必须增加y=0的点来进行第1种转移,不加是错误的,等于少了这种情况!

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid ll m = (l + r) >> 1 const int M = 1e5+;
ll mx[M<<],lazy[M<<];
void up(ll rt){
mx[rt] = max(mx[rt<<],mx[rt<<|]);
} void pushdown(ll rt){
if(lazy[rt]){
lazy[rt<<] += lazy[rt];
lazy[rt<<|] += lazy[rt];
mx[rt<<] += lazy[rt];
mx[rt<<|] += lazy[rt];
lazy[rt] = ;
}
} void build(ll l,ll r,ll rt){
lazy[rt] = ; mx[rt] = ;
if(l == r){
return ;
}
mid;
build(lson); build(rson);
} void update(ll p,ll c,ll l,ll r,ll rt){
if(l == r){
mx[rt] = max(mx[rt],c);
return ;
}
pushdown(rt);
mid;
if(p <= m) update(p,c,lson);
else update(p,c,rson);
up(rt);
} void update1(ll L,ll R,ll c,ll l,ll r,ll rt){
if(L > R) return ; //会出现L > R的情况,需要判下
if(L <= l&&R >= r){
mx[rt] += c;
lazy[rt] += c;
return ;
}
pushdown(rt);
mid;
if(L <= m) update1(L,R,c,lson);
if(R > m) update1(L,R,c,rson);
up(rt);
} ll query(ll L,ll R,ll l,ll r,ll rt){
if(L > R) return ;
if(L <= l&&R >= r){
return mx[rt];
}
pushdown(rt);
mid;
ll ret = ;
if(L <= m) ret = max(ret,query(L,R,lson));
if(R > m) ret = max(ret,query(L,R,rson));
return ret;
} struct node{
ll x,y,a,b;
}v[M];
bool cmp(node aa,node bb){
if(aa.x == bb.x) return aa.y > bb.y;
return aa.x < bb.x;
}
ll t[M];
int main()
{
ll n;
while(scanf("%lld",&n)!=EOF){
ll cnt = ;
for(ll i = ;i <= n;i ++){
scanf("%lld%lld%lld%lld",&v[i].x,&v[i].y,&v[i].a,&v[i].b);
t[++cnt] = v[i].y;
}
sort(t+,t++cnt);
sort(v+,v++n,cmp);
ll m = unique(t+,t++cnt)-t-;
for(ll i = ;i <= n;i ++)
v[i].y = lower_bound(t+,t++m,v[i].y)-t+; //离散化时点都向后移一位
m ++; //点后移了一位,长度要+1;
build(,m,);
for(ll i = ;i <= n;i ++){
ll ans = query(,v[i].y,,m,);
update1(v[i].y+,m,v[i].b,,m,);
update1(,v[i].y-,v[i].a,,m,);
update(v[i].y,ans+v[i].b,,m,);
}
printf("%lld\n",mx[]);
}
return ;
}

线段树优化dp——牛客多校第一场I(好题)的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 牛客多校第一场 B Inergratiion

    牛客多校第一场 B Inergratiion 传送门:https://ac.nowcoder.com/acm/contest/881/B 题意: 给你一个 [求值为多少 题解: 根据线代的知识 我们可 ...

  3. 2019年牛客多校第一场B题Integration 数学

    2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...

  4. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  5. 2019年牛客多校第一场 I题Points Division 线段树+DP

    题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...

  6. 线段树区间离散化——牛客多校E

    这个区间离散化把我调死了.. 总之用vector来离散化,然后叶子节点维护的是一段区间,记录下每个叶子结点的起点+长度 千万要注意下标不能弄错! #include<bits/stdc++.h&g ...

  7. 牛客多校第一场 A Equivalent Prefixes 单调栈(笛卡尔树)

    Equivalent Prefixes 单调栈(笛卡尔树) 题意: 给出两个数组u,v,每个数组都有n个不同的元素,RMQ(u,l,r)表示u数组中[l,r]区间里面的最小值标号是多少,求一个最大的m ...

  8. 2019牛客多校第一场 E-ABBA(dp)

    ABBA 题目传送门 解题思路 用dp[i][j]来表示前i+j个字符中,有i个A和j个B的合法情况个数.我们可以让前n个A作为AB的A,因为如果我们用后面的A作为AB的A,我们一定也可以让前面的A对 ...

  9. 2019年牛客多校第一场 E题 ABBA DP

    题目链接 传送门 思路 首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论. \(dp[i][j]\)表示 ...

随机推荐

  1. PHP-在排序数组中查找元素的第一个和最后一个位置

    给定一个按照升序排列的整数数组 nums,和一个目标值 target.找出给定目标值在数组中的开始位置和结束位置. 你的算法时间复杂度必须是 O(log n) 级别. 如果数组中不存在目标值,返回 [ ...

  2. web框架express学习一

    服务端 node app.jsapp.jslet express = require("express"); let http = require("http" ...

  3. zabbix 发送邮件到企业微信

    #!/usr/bin/python2.7#_*_coding:utf-8 _*_#auther:拿来用用import requests,sys,jsonimport urllib3urllib3.di ...

  4. JMeter Http请求之content-type用法

    转载自https://www.cnblogs.com/imyalost/p/6726795.html 本文讲三种content-type以及在Jmeter中对应的参数输入方式 第一部分:目前工作中涉及 ...

  5. 为delphi程序添加脚本功能,用脚本控制delphi程序

    使用微软的ActiveX Scripting技术,可以在应用程序中集成使用vbscript或这javascript脚本语言.在delphi中点击Component菜单的Import Activex C ...

  6. [SDOI2015]排序 题解 (搜索)

    Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中 ...

  7. SQL生成 C# Model

    本文转自: https://www.cnblogs.com/jhli/p/11552105.html declare @TableName sysname = 'T_FakeOrderList' de ...

  8. CSS3 Media Queries模板:max-width和min-width

    CSS3 Media Queries模板 CSS3 Media Queries一般都是使用“max-width”和“min-width”两个属性来检查各种设备的分辨大小与样式表所设条件是否满足,如果满 ...

  9. centos7.4 系统优化

    static 表示该服务与其他服务相关联,不能单独设置该服务的启动状态 disabled 表示禁止开机启动 enabled 表示允许开机启动 auditd.service enabled autovt ...

  10. kafka相关业务必会操作命令整理

    参考:https://kafka.apache.org 服务相关命令 1.启动/停止zk > bin/zookeeper-server-start.sh config/zookeeper.pro ...