四,专著研读(K-近邻算法)

  • K-近邻算法
    有监督学习距离类模型,
  • k-近邻算法步骤
    • 计算已知类别数据集中的点与当前点之间的距离
    • 按照距离递增的次序进行排序
    • 选取与当前点距离最小的K个点
    • 确定前k个点出现频率
    • 返回前k个点出现频率最高的类别作为当前点的预测类别
  • 欧氏距离

    \(dist\left ( x,y \right )=\sqrt{\left ( x_{1}-y_{1} \right )^{2}+\left ( x_{2}-y_{2} \right )^{2}+...+\left ( x_{n}-y_{n} \right )^{2}}=\sqrt{\sum_{i=1}^{n}\left ( x_{i}-y_{i} \right )^{2}}\)
  • K的选择对分类器的效果有决定性的作用,
  • 数据归一化处理
    0-1标准化,Z-score标准化,Sigmoid压缩法等,其中最简单的是0-1标准化。

    \(x_{normalization}=\frac{x-Min}{Max-Min}\)
  • K-近邻
    • 数据输入:特征空间中至少包含k个训练样本(k>=1),特征空间中各个特征的量纲需要统一,若不统一则需要进行归一化处理,自定义超参数k(k>=1)
    • 模型输出:在KNN分类中,输出是标签中的某个类别,在KNN回归中,输出是对象的属性值,该值是距离输入的数据最近的k个训练样本标签的平均值。
  • 优点
    • 容易理解,精度高,既可以用来做分类也可以用来做回归
    • 可用于数值型数据,和离散型数据
    • 无数据输入假定
    • 适合对稀有数据进行分类
  • 缺点
    • 计算复杂性高,空间复杂性高
    • 计算量大
    • 样本不平衡问题
    • 可理解性较差

四,专著研读(K-近邻算法)的更多相关文章

  1. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  2. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  3. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  4. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  5. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  6. <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...

  7. 用Python从零开始实现K近邻算法

    KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...

  8. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  9. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  10. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

随机推荐

  1. Paper慢慢读 - AB实验人群定向 Learning Triggers for Heterogeneous Treatment Effects

    这篇论文是在 Recursive Partitioning for Heterogeneous Casual Effects 的基础上加入了两个新元素: Trigger:对不同群体的treatment ...

  2. ffmpeg-python 任意提取视频帧

    ▶ 环境准备 1.安装 FFmpeg 音/视频工具 FFmpeg 简易安装文档 2.安装 ffmpeg-python pip3 install ffmpeg-python 3.[可选]安装 openc ...

  3. 关于OpenCASCADE数组序列的起始值

    C/C++的数组是从0开始计算的,5个值的数组则下标会对应 0, 1, 2, 3, 4. 在数学上可能不这么数,我所知道的 Mathematica 内的 List 是从 1 开始作为下标的. Open ...

  4. Element-ui 中的Dialog 对话框

    给表头添加一个底部分割线 固定表格的内容高度 添加底部按钮 <template> <div> <el-button type="text" @clic ...

  5. SQL查询--内连接、外连接、自连接查询

    先创建2个表:学生表和教师表   1.内连接: 在每个表中找出符合条件的共有记录.[x inner join y on...] 第一种写法:只用where SELECT t.TEACHER_NAME, ...

  6. HDU2899Strange fuction(二分/三分)

    传送门 题目大意:求 F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100):的最小值 题解:求个导,二分导函数零点,就是原函数最小值所在的 ...

  7. golang--连接redis数据库并进行增删查改

    (1)安装第三方开源的redis库: (2)在使用redis之前,需要安装第三方库,在GOPATH路径下执行安装指令--$GOPATH$:go get github.com/garyburd/redi ...

  8. 用OC基于链表实现链队列

    一.简言 在前面已经用C++介绍过链队列的基本算法,可以去回顾一下https://www.cnblogs.com/XYQ-208910/p/11692065.html.少说多做,还是上手撸代码实践一下 ...

  9. 安全性测试:OWASP ZAP 2.8 使用指南(一):安全测试基础及ZAP下载、安装

    概览 本文意在对于OWASP's Zed Attack Proxy(ZAP)软件做一个基本使用指南介绍. ZAP是一个用于实施安全性测试的工具,即使没有很强的安全测试背景也可以很好的使用. 为了达到这 ...

  10. 黄聪:PHP转换网址相对路径到绝对路径的一种方法

    相信很多程序(尤其是采集类的程序)都会有需要把网址的相对路径转换成绝对路径的需要,例如采集到某页面的HTML代码中包含资源文件经常会看到这样的文件名: <link rel="style ...