02(b)多元无约束优化问题-最速下降法
此部分内容接02(a)多元无约束优化问题的内容!
第一类:最速下降法(Steepest descent method)
\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\]
要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\mathbf{x}}_{k}}$的函数值,即:
\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })-f({{\mathbf{x}}_{k}})={{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }=\left\| \nabla f({{\mathbf{x}}_{k}}) \right\|\cdot \left\| \mathbf{\delta } \right\|\cos \theta <0\]
其中$\theta $为梯度向量$\nabla f({{\mathbf{x}}_{k}})$和方向向量$\mathbf{\delta }$的夹角,由上式可见当$\theta =\pi $时$f({{\mathbf{x}}_{k}}+\mathbf{\delta })$
与$f({{\mathbf{x}}_{k}})$的差值在满足(8)式的情况下达到最大,即$\mathbf{\delta }$应取与梯度向量相反的方向$-\nabla f({{\mathbf{x}}_{k}})$。故此时使函数$f(\mathbf{x})$在点${{\mathbf{x}}_{k}}$下降速度最快的方向为:
${{d}_{k}}=-\nabla f({{\mathbf{x}}_{k}})$。
Step3:通过Step2确定下降方向${{\mathbf{d}}_{k}}$之后,$f({{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}})$可以看成${{\alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{\alpha }_{k}}>0$,${{\mathbf{x}}_{k+1}}={{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}}$;
Step4: if走一步的距离$\left\| {{\alpha }_{k}}{{\mathbf{d}}_{k}} \right\|<\varepsilon $,则停止并且输出解${{\mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。
02(b)多元无约束优化问题-最速下降法的更多相关文章
- 02(c)多元无约束优化问题-牛顿法
此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...
- 02(d)多元无约束优化问题-拟牛顿法
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...
- 02(a)多元无约束优化问题
2.1 基本优化问题 $\operatorname{minimize}\text{ }f(x)\text{ for }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...
- 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题
2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...
- 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...
- MATLAB进行无约束优化
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...
- 01(b)无约束优化(准备知识)
1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{ ...
- 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...
- 065 01 Android 零基础入门 01 Java基础语法 08 Java方法 02 带参无返回值方法
065 01 Android 零基础入门 01 Java基础语法 08 Java方法 03 带参无返回值方法 本文知识点:带参无返回值方法 说明:因为时间紧张,本人写博客过程中只是对知识点的关键步骤进 ...
随机推荐
- VMware Workstation克隆linux虚拟机操作
1.删除MAC地址,修改IP [root@xuegod63 network-scripts]# vim ifcfg-eth0 [root@xuegod63 network-scripts]# cat ...
- WPF TreeView绑定xaml的写法
方法一 <Window x:Class="TreeViewDemo.MainWindow" xmlns="http://schemas.microsoft.com/ ...
- MVVM讲解
一,MVVM理论知识 从上一篇文章中,我们已经知道,WPF技术的主要特点是数据驱动UI,所以在使用WPF技术开发的过程中是以数据为核心的,WPF提供了数据绑定机制,当数据发生变化时,WPF会自动发出通 ...
- 什么是 MEF?
什么是 MEF? Managed Extensibility Framework 即 MEF 是用于创建轻量.可扩展应用程序的库. 它让应用程序开发人员得以发现和使用扩展且无需配置. 它还让扩展开发人 ...
- 在Delphi中创建线程,请一定使用BeginThread()代替CreateThread()创建线程!(更好的管理异常)
在Delphi中创建线程,请一定使用BeginThread()代替CreateThread()创建线程! 如果直接使用Win32的API函数CreateThread()创建多个线程,也是可以创建的.但 ...
- OpenDJ Roadmap
Roadmap https://wikis.forgerock.org/confluence/display/OPENDJ/OpenDJ+Roadmap Forum https://forum.for ...
- Qt:解析命令行(使用QCommandLineOption和QCommandLineParser)
Qt从5.2版开始提供了两个类QCommandLineOption和QCommandLineParser来解析应用的命令行参数. 一.命令行写法命令行:"-abc" 在QComma ...
- Oracle数据库备份和恢复的基本命令
Oracle数据库备份与恢复基本命令 1. 获取帮助 $ exp help=y $ imp help=y 2.三种工作方式 (1)交互式方式 $ exp 然后按提示输入所需要的参数 (2)命令行方式 ...
- Spring Boot入门篇(基于Spring Boot 2.0系列)
1:概述: Spring Boot是用来简化Spring应用的初始化开发过程. 2:特性: 创建独立的应用(jar|war形式); 需要用到spring-boot-maven-plugin插件 直接嵌 ...
- ZooKeeper学习第四期---构建ZooKeeper应用(转)
转载来源:https://www.cnblogs.com/sunddenly/p/4064992.html 一.配置服务 配置服务是分布式应用所需要的基本服务之一,它使集群中的机器可以共享配置信息中那 ...