此部分内容接02(a)多元无约束优化问题的内容!

第一类:最速下降法(Steepest descent method)

\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\]

要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\mathbf{x}}_{k}}$的函数值,即:

\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })-f({{\mathbf{x}}_{k}})={{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }=\left\| \nabla f({{\mathbf{x}}_{k}}) \right\|\cdot \left\| \mathbf{\delta } \right\|\cos \theta <0\]

其中$\theta $为梯度向量$\nabla f({{\mathbf{x}}_{k}})$和方向向量$\mathbf{\delta }$的夹角,由上式可见当$\theta =\pi $时$f({{\mathbf{x}}_{k}}+\mathbf{\delta })$

与$f({{\mathbf{x}}_{k}})$的差值在满足(8)式的情况下达到最大,即$\mathbf{\delta }$应取与梯度向量相反的方向$-\nabla f({{\mathbf{x}}_{k}})$。故此时使函数$f(\mathbf{x})$在点${{\mathbf{x}}_{k}}$下降速度最快的方向为:

${{d}_{k}}=-\nabla f({{\mathbf{x}}_{k}})$。

Step3:通过Step2确定下降方向${{\mathbf{d}}_{k}}$之后,$f({{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}})$可以看成${{\alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{\alpha }_{k}}>0$,${{\mathbf{x}}_{k+1}}={{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}}$;

Step4: if走一步的距离$\left\| {{\alpha }_{k}}{{\mathbf{d}}_{k}} \right\|<\varepsilon $,则停止并且输出解${{\mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。

02(b)多元无约束优化问题-最速下降法的更多相关文章

  1. 02(c)多元无约束优化问题-牛顿法

    此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...

  2. 02(d)多元无约束优化问题-拟牛顿法

    此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...

  3. 02(a)多元无约束优化问题

    2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...

  4. 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题

    2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...

  5. 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)

    本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...

  6. MATLAB进行无约束优化

    首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...

  7. 01(b)无约束优化(准备知识)

    1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{   ...

  8. 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)

    简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...

  9. 065 01 Android 零基础入门 01 Java基础语法 08 Java方法 02 带参无返回值方法

    065 01 Android 零基础入门 01 Java基础语法 08 Java方法 03 带参无返回值方法 本文知识点:带参无返回值方法 说明:因为时间紧张,本人写博客过程中只是对知识点的关键步骤进 ...

随机推荐

  1. OA 框架

    @{    Layout = null;}<!DOCTYPE html><html><head>    <meta name="viewport&q ...

  2. js 看图识国家

    <!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...

  3. 实现:C#窗体中的文本框只能输入中文汉字,其他输入无效。问:正则表达式怎么用?

    原文:实现:C#窗体中的文本框只能输入中文汉字,其他输入无效.问:正则表达式怎么用? private void textBox1_KeyPress(object sender, KeyPressEve ...

  4. NET实现RSA AES DES 字符串 加密解密以及SHA1 MD5加密

    本文列举了    数据加密算法(Data Encryption Algorithm,DEA) 密码学中的高级加密标准(Advanced EncryptionStandard,AES)RSA公钥加密算法 ...

  5. 自定义QT窗口部件外观之QStyle

    自定义QT窗口部件外观 重新定义Qt内置窗口部件的外观常用的方法有两种:一是通过子类化QStyle 类或者预定义的一个样式,例如QWindowStyle,来定制应用程序的观感:二是使用Qt样式表. Q ...

  6. 如何解析DELPHI XE5服务器返回的JSON数据(翻译)及中文乱码

    <span style="font-size:14px;">一直想找如何解析JSON数据的说,今天终于找到有人发帖子了.之前有人说用superobject,Tlkjso ...

  7. IntelliJ IDEA的jsp中内置对象方法无法被解析的解决办法

    主要原因是因为缺乏依赖 可以通过添加依赖的方式 导入servlet-api.jar,jsp-api.jar,tomcat-api.jar 这三个jar即可 这三个jar在tomcat的lib目录下有 ...

  8. 可视化流程设计——流程设计器演示(基于Silverlight)

    上一篇文章<通用流程设计>对鄙人写的通用流程做了一定的介绍,并奉上了相关源码.但一个好的流程设计必少不了流程设计器的支持,本文将针对<通用流程设计>中的流程的设计器做一个简单的 ...

  9. Delphi XE6 如何设计并使用FireMonkeyStyle

    介绍   FireMonkey使用Style来控制控件的显示方式. 每个控件都有一个StyleLookup属性,FireMonkey就是通过控件的这个属性来在当前窗体的StyleBook控件中查找匹配 ...

  10. Qemu搭建ARM vexpress开发环境(二)----通过u-boot启动Linux内核

    Qemu搭建ARM vexpress开发环境(二)----通过u-boot启动Linux内核 标签(空格分隔): Qemu ARM Linux 在上文<Qemu搭建ARM vexpress开发环 ...