此部分内容接02(a)多元无约束优化问题的内容!

第一类:最速下降法(Steepest descent method)

\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\]

要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\mathbf{x}}_{k}}$的函数值,即:

\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })-f({{\mathbf{x}}_{k}})={{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }=\left\| \nabla f({{\mathbf{x}}_{k}}) \right\|\cdot \left\| \mathbf{\delta } \right\|\cos \theta <0\]

其中$\theta $为梯度向量$\nabla f({{\mathbf{x}}_{k}})$和方向向量$\mathbf{\delta }$的夹角,由上式可见当$\theta =\pi $时$f({{\mathbf{x}}_{k}}+\mathbf{\delta })$

与$f({{\mathbf{x}}_{k}})$的差值在满足(8)式的情况下达到最大,即$\mathbf{\delta }$应取与梯度向量相反的方向$-\nabla f({{\mathbf{x}}_{k}})$。故此时使函数$f(\mathbf{x})$在点${{\mathbf{x}}_{k}}$下降速度最快的方向为:

${{d}_{k}}=-\nabla f({{\mathbf{x}}_{k}})$。

Step3:通过Step2确定下降方向${{\mathbf{d}}_{k}}$之后,$f({{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}})$可以看成${{\alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{\alpha }_{k}}>0$,${{\mathbf{x}}_{k+1}}={{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}}$;

Step4: if走一步的距离$\left\| {{\alpha }_{k}}{{\mathbf{d}}_{k}} \right\|<\varepsilon $,则停止并且输出解${{\mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。

02(b)多元无约束优化问题-最速下降法的更多相关文章

  1. 02(c)多元无约束优化问题-牛顿法

    此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...

  2. 02(d)多元无约束优化问题-拟牛顿法

    此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...

  3. 02(a)多元无约束优化问题

    2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...

  4. 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题

    2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...

  5. 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)

    本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...

  6. MATLAB进行无约束优化

    首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...

  7. 01(b)无约束优化(准备知识)

    1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{   ...

  8. 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)

    简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...

  9. 065 01 Android 零基础入门 01 Java基础语法 08 Java方法 02 带参无返回值方法

    065 01 Android 零基础入门 01 Java基础语法 08 Java方法 03 带参无返回值方法 本文知识点:带参无返回值方法 说明:因为时间紧张,本人写博客过程中只是对知识点的关键步骤进 ...

随机推荐

  1. 使用 advanced installer 为 winform 做自动更新

    原文:使用 advanced installer 为 winform 做自动更新 advanced installer 是一款打包程序,基于 windows installer 并扩展了一些功能,比如 ...

  2. Struts2之Struts2

    Struts2-2.5.5版本是目前为止最新的版本了,相对于之前的2.3版本以及再之前的版本而言,新版本改动了很多. 好了,废话不多说,GO CODE! 基本jar包: web.xml核心配置,这里要 ...

  3. 基于vue开发的多功能的时间选择器组件,开箱即用

    好一段时间没有写过博客了,在国庆期间心血来潮优化了一个组件,在日常开发中时常会有需求用到时间选择器,不同的项目需求可能会不一样.近期开发的几个项目中就有需求用到这样的选择器,由于以前有用到相关的组件, ...

  4. 指定Qt程序运行的style,比如fusion(以前没见过QStyleFactory)

    转载请注明文章:指定Qt程序运行的style,比如fusion 出处:多客博图 代码很简单,如下: #include <QtWidgets/QApplication>   #include ...

  5. wpf VisualBrush 的使用,可创建重复图像

    VisualBrush 类(msdn) <Grid.Background> <VisualBrush TileMode="Tile" Viewport=" ...

  6. Resolve conflict using "MERGE_HEAD (origin/HEAD)"

    Git进行同步的时候,经常会出现冲突,有时候冲突的选项会有图示中的三种选项: 1.Resolved:直接把文件标识为冲突已经解决,一般是自己手动查看并解决完冲突以后使用. 2.Resolve conf ...

  7. 零元学Expression Blend 4 - Chapter 18 用实例了解互动控制项「CheckBox」II

    原文:零元学Expression Blend 4 - Chapter 18 用实例了解互动控制项「CheckBox」II 延续上一章的CheckBox教学,本章将以实作继续延伸更灵活的运用CheckB ...

  8. UBUNTU 16.04 + CUDA8.0 + CUDNN6.0 + OPENCV3.2 + MKL +CAFFE + tensorflow

    首先说一下自己机子的配置 CPU:Intel(R) Core(TM) i5-5600 CUP @3.20GHz *4 GPU : GTX 1060 OS : 64bit Ubuntu16.04LTS ...

  9. 学会了使用qmake -query

    D:\Qt\Qt5.6.2_static_kk\bin>qmake -queryQT_SYSROOT:QT_INSTALL_PREFIX:C:/Qt/Qt5.6.2_static_kkQT_IN ...

  10. RPG Maker MV游戏解包

    该文章最新版本请前往:https://www.crowsong.xyz/127.html 前言 使用Petschko's RPG-Maker-MV File-Decrypter进行解包 使用Petsc ...