LOJ #2141. 「SHOI2017」期末考试
题目链接
题解
据说这道题可以三分(甚至二分)?
反正我是枚举的 = =
先将t和b数组排序后计算出前缀和,
然后枚举最晚的出成绩时间,每次可以O(1)直接计算调整到该时间所需的代价。
如何计算?
对于学生不满意造成的代价,是 (不满意人数 * 最晚结束时间) - 所有不满的人的t之和;
对于调整老师造成的代价, A < B 时先用A调整 (可用前缀和计算出有多少时间能用来交换,又有多少时间需要被交换)再用B调整仍超出的部分; 否则都用B调整。
真的如高大佬所言是sb题啊 = =
为什么当年的我不会啊
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdlib>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef unsigned long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100005;
ll n, m, A, B, C, t[N], sumt[N], b[N], sumb[N], tim, ans = 1LL << 62;
int main(){
read(A), read(B), read(C);
read(n), read(m);
for(ll i = 1; i <= n; i++) read(t[i]);
sort(t + 1, t + n + 1);
for(ll i = 1; i <= n; i++) sumt[i] = sumt[i - 1] + t[i];
for(ll i = 1; i <= m; i++) read(b[i]);
sort(b + 1, b + m + 1);
for(ll i = 1; i <= m; i++) sumb[i] = sumb[i - 1] + b[i];
ll pt = 0, pb = 0;
for(tim = 0; tim <= b[m]; tim++){
while(pt < n && t[pt + 1] < tim) pt++;
while(pb < m && b[pb + 1] < tim) pb++;
ll sumbl = pb * tim - sumb[pb], sumbr = sumb[m] - sumb[pb] - (m - pb) * tim;
ll res = min(sumbr * B, min(sumbl, sumbr) * A + (sumbr - min(sumbl, sumbr)) * B);
res += (pt * tim - sumt[pt]) * C;
ans = min(ans, res);
}
write(ans), enter;
return 0;
}
LOJ #2141. 「SHOI2017」期末考试的更多相关文章
- loj2141 「SHOI2017」期末考试
我们枚举每一个时间点,使得所有科目的时间都小于等于这个时间点,计算安排老师的代价和学生们的不满意度更新答案. 但是枚举太慢了,可以发现,时间点越早,学生们不满意度越小,安排老师的代价越高.即安排老师的 ...
- loj #2143. 「SHOI2017」组合数问题
#2143. 「SHOI2017」组合数问题 题目描述 组合数 Cnm\mathrm{C}_n^mCnm 表示的是从 nnn 个互不相同的物品中选出 mmm 个物品的方案数.举个例子, 从 ...
- LOJ #2145. 「SHOI2017」分手是祝愿
题目链接 LOJ #2145 题解 一道画风正常的--期望DP? 首先考虑如何以最小步数熄灭所有灯:贪心地从大到小枚举灯,如果它亮着则修改它.可以求出总的最小步数,设为\(cnt\). 然后开始期望D ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
随机推荐
- 搭建Hadoop的HA高可用架构(超详细步骤+已验证)
一.集群的规划 Zookeeper集群: 192.168.182.12 (bigdata12)192.168.182.13 (bigdata13)192.168.182.14 (bigdata14) ...
- 大数据入门第二十五天——elasticsearch入门
一.概述 推荐路神的ES权威指南翻译:https://es.xiaoleilu.com/010_Intro/00_README.html 官网:https://www.elastic.co/cn/pr ...
- 20155338《网络对抗》 Exp4 恶意代码分析
20155338<网络对抗>恶意代码分析 实验过程 1.计划任务监控 在C盘根目录下建立一个netstatlog.bat文件(先把后缀设为txt,保存好内容后记得把后缀改为bat),内容如 ...
- Javascript 地图库收集
ArcGis leafletjs openlayers jvectormap
- StringUtils类方法归纳
StringUtils方法概览 IsEmpty/IsBlank - checks if a String contains text IsEmpty/IsBlank – 检查字符串是否有内容. Tri ...
- 自定义CCNode
对Touch事件的获取与处理可以使用CCLayer, CCMenuItem等,但是如果我们需要一个虚拟按键或者需要对特定精灵进行拖动等等,我们就需要自定义Touch类. 自定义Touch事件处理类重要 ...
- python常用算法实现
排序是计算机语言需要实现的基本算法之一,有序的数据结构会带来效率上的极大提升. 1.插入排序 插入排序默认当前被插入的序列是有序的,新元素插入到应该插入的位置,使得新序列仍然有序. def inser ...
- SpringMVC源码总结
SpringMVC源码总结 http://blog.csdn.net/z69183787/article/details/52816927
- Flask学习-Flask app接受第一个HTTP请求
一.__call__() 在Flask app启动后,一旦uwsgi收到来自web server的请求,就会调用后端app,其实此时就是调用app的__call__(environ,start_res ...
- STM8S——8位基本定时器(TIM4)
简介:该定时器由一个带可编程预分频器的8位自动重载的向上计数器所组成,它可以用来作为时基发生器,具有溢出中断功能. 主要功能: (1)8位向上计数的自动重载计数器: (2)3位可编程的预分配器(可在运 ...