题目链接:

  http://www.lightoj.com/volume_showproblem.php?problem=1170

题目描述:
  给出一些满足完美性质的一列数(x > 1 and y > 1 such that m = xy.) 然后给出一个区间,问在这个区间中的完美数组成的搜索二叉树的个数是多少?
解题思路:

  1,打标算出所有的完美数列中的数字

  2,打表算出卡特兰数列,等着以后用

  3,卡特兰数列递推式:F[N] = F[N-1] * ( 4 * N - 2 ) / ( N + 1 ), 求余的时候牵涉到逆元,用扩展欧几里德或者费马小定理求解逆元

准备到这里就万事大吉了!

    卡特兰数应用

代码:

  

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std; #define LL long long
#define maxn 110100
#define mod 100000007
const LL Max = 1e10;
LL a[maxn], ans[maxn], num; LL Extended_Euclid (LL a, LL b, LL &x, LL &y)
{
//处理 a * b > 0 的情况
if (b == )
{
x = ;
y = ;
return a;
} LL r = Extended_Euclid (b, a%b, x, y), t;
t = x;
x = y;
y = t - a / b * y;
return r;
} void init ()
{
//memset (vis, 0, sizeof(vis));
num = ;
for (LL i=; i<maxn; i++)
{
LL j = i * i;
while (j <= Max)
{
a[num ++] = j;
j *= i;
}
} sort (a, a+ num);
num = unique (a, a+num) - a; ans[] = ;
ans[] = ;
for (LL i=; i<maxn; i++)
{
/// F[N] = F[N-1] * ( 4 * N - 2 ) / ( N + 1 )
LL x, y, r;
r = Extended_Euclid (i+, mod, x, y);
ans[i] = ans[i-] * ( * i - ) % mod * (x % mod + mod ) % mod;
}
} int main ()
{
init (); int T, L = ;
cin >> T;
while (T --)
{
LL x, y;
scanf ("%lld %lld", &x, &y);
x = lower_bound (a, a+num, x) - a;
y = upper_bound (a, a+num, y) - a; printf ("Case %d: %lld\n", L++, ans[y - x]);
}
return ;
}

LightOj 1170 - Counting Perfect BST (折半枚举 + 卡特兰树)的更多相关文章

  1. LightOJ - 1170 - Counting Perfect BST(卡特兰数)

    链接: https://vjudge.net/problem/LightOJ-1170 题意: BST is the acronym for Binary Search Tree. A BST is ...

  2. 1170 - Counting Perfect BST

    1170 - Counting Perfect BST   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...

  3. light oj1170 - Counting Perfect BST卡特兰数

    1170 - Counting Perfect BST BST is the acronym for Binary Search Tree. A BST is a tree data structur ...

  4. LightOj 1076 - Get the Containers (折半枚举好题)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1076 题目描述: 给出n个数,要求分成m段,问这m段中最大的总和,最小是多少 ...

  5. LightOJ1170 - Counting Perfect BST(卡特兰数)

    题目大概就是求一个n个不同的数能构造出几种形态的二叉排序树. 和另一道经典题目n个结点二叉树不同形态的数量一个递推解法,其实这两个问题的解都是是卡特兰数. dp[n]表示用n个数的方案数 转移就枚举第 ...

  6. LightOJ 1235 - Coin Change (IV) (折半枚举)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1235 题目描述: 给出n个硬币,每种硬币最多使用两次,问能否组成K面值? 解 ...

  7. Load Balancing 折半枚举大法好啊

    Load Balancing 给出每个学生的学分.   将学生按学分分成四组,使得sigma (sumi-n/4)最小.         算法:   折半枚举 #include <iostrea ...

  8. CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。

    1514: Packs Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 4[Submit][Status][Web Board] ...

  9. NYOJ 1091 超大01背包(折半枚举)

    这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...

随机推荐

  1. dubbo springCloud比较

    1.dubbo只是专注于服务之间的治理,配置中心.分布式跟踪等这些内容都需要自己集成 2.dubbo核心功能: a.远程通讯 b.集群容错 c.自动发现 Dubbo SpringCloud 服务注册中 ...

  2. vue 安装与起步

    vue安装: 1.官网下载vue,在script标签里引用(去下载) 2.使用CDN(建议下载到本地,不推荐这种方法): BootCDN:https://cdn.bootcss.com/vue/2.2 ...

  3. SpringMVC实战(注解)

    1.前言 前面几篇介绍了SpringMVC中的控制器以及视图之间的映射方式,这篇来解说一下SpringMVC中的注解,通过注解能够非常方便的訪问到控制器中的某个方法. 2.配置文件配置 2.1 注解驱 ...

  4. Kubernetes实战阅读笔记--1、介绍

    1.业界根据云计算提供服务资源的类型将其划分为三大类: 基础设施即服务(Infrastructure-as-a-Service,IaaS).平台即服务(Platform-as-a-Service,Pa ...

  5. HBase2.0新特性之In-Memory Compaction

    In-Memory Compaction是HBase2.0中的重要特性之一,通过在内存中引入LSM结构,减少多余数据,实现降低flush频率和减小写放大的效果.本文根据HBase2.0中相关代码以及社 ...

  6. redis09---redis 服务器端命令

    redis 服务器端命令 db0,db1,db2是数据库,外层是服务器,服务器下面有20个数据库. :>time ) "" //多少秒 ) "" //多少 ...

  7. Hadoop中序列化与Writable接口

    学习笔记,整理自<Hadoop权威指南 第3版> 一.序列化 序列化:序列化是将 内存 中的结构化数据 转化为 能在网络上传输 或 磁盘中进行永久保存的二进制流的过程:反序列化:序列化的逆 ...

  8. CentOS7.2安装Vim8和YouCompleteMe

    1.环境 本文使用VMWare虚拟机进行实验,客户机系统是CentOS 7.2最小安装(CentOS-7-x86_64-Minimal-1511.iso) 最终实现效果:安装vim8 + python ...

  9. HDU2609 How many —— 最小表示法

    题目链接:https://vjudge.net/problem/HDU-2609 How many Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  10. linux初级学习笔记三:linux操作系统及常用命令,及如何复制和移动文件!(视频序号:02_4)

    本节学习的命令:cp,mv,install,du,read 本节学习的技能:文件的移动与复制 cp( copy):复制和移动文件 cp SRC DEST -r:递归复制一个目录及其目录中的所有文件 - ...