51nod 1296 有限制的排列(DP)
对于一个i,如果要比邻居大,那么i比i-1大,i+1比i小,比邻居小同理。设v[i]=0表示i与i-1的关系无限制,v[i]=1表示a[i-1]>a[i],v[i]=2表示a[i-1]<a[i]
则有
显然这个是可以用前缀和优化成O(N^2)的
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define MOD(x) (x>=mod?x-mod:x)
using namespace std;
const int maxn=,mod=1e9+;
int n,m1,m2,x,y;
int f[maxn][maxn],v[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);read(m1);read(m2);
for(int i=;i<=m1;i++)read(x),v[x+]=,v[x+]=;
for(int i=;i<=m2;i++)read(x),v[x+]=,v[x+]=;
f[][]=;
for(int i=;i<=n;i++)
{
if(v[i]==||!v[i])for(int j=i,sum=;j;j--)sum=MOD(sum+f[i-][j]),f[i][j]+=sum;
if(v[i]==||!v[i])for(int j=,sum=;j<=i;j++)f[i][j]=MOD(f[i][j]+sum),sum=MOD(sum+f[i-][j]);
}
int ans=;
for(int i=;i<=n;i++)ans=MOD(ans+f[n][i]);
printf("%d\n",ans);
}
51nod 1296 有限制的排列(DP)的更多相关文章
- 51nod 1293 球与切换器 | DP
51nod 1293 球与切换器 | DP 题面 有N行M列的正方形盒子.每个盒子有三种状态0, -1, +1.球从盒子上边或左边进入盒子,从下边或右边离开盒子.规则: 如果盒子的模式是-1,则进入它 ...
- 51nod 1020 逆序排列 DP
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...
- 51nod 1020 逆序排列——dp
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...
- 51nod 1327 棋盘游戏——延迟决策的dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1327 因为一列填1个或0个(或0个!!!),而一行不知填多少个,所 ...
- [多校联考2 T3] 排列 (DP)
DP Description 对于一个排列,考虑相邻的两个元素,如果后面一个比前面一个大,表示这个位置是上升的,用 I 表示,反之这个位置是下降的,用 D表示.如排列 3,1,2,7,4,6,5 可以 ...
- 51nod 1412 AVL树的种类(dp)
题目链接:51nod 1412 AVL树的种类 开始做的时候把深度开得过小了结果一直WA,是我天真了.. #include<cstdio> #include<cstring> ...
- 51nod 1051 最大子矩阵和(dp)
题目链接:51nod 1051 最大子矩阵和 实质是把最大子段和扩展到二维.读题注意m,n... #include<cstdio> #include<cstring> #inc ...
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- 51nod 1934 受限制的排列——笛卡尔树
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1934 根据给出的信息,可以递归地把笛卡尔树建出来.一个点只应该有 0/1/2 ...
随机推荐
- Selenium安装(二)
安装python 安装Selenium之前首先来说一下Python,python是一门动态性语言,python的编写比较灵活,简洁,开发效率高.因此以python结合selenium来进行自动化测试. ...
- unity中虚拟摇杆的实现
实现效果: 实现: 使用NGUI添加虚拟摇杆背景和其子物体按钮,为按钮Attach boxcollider和ButtionScript.为按钮添加如下脚本: 注意:其中的静态属性可以在控制物体移动的 ...
- 互联网行业求职课-教你进入BAT
互联网行业求职课--教你进入BAT 课时1. 课程内容介绍.导师介绍.服务安排和介绍等 课时2. 互联网行业.职业选择指导 互联网公司选择: 大公司:收获:大平台,系统思维,系统培训,系统性的发展,薪 ...
- 【system.string】使用说明
对象:system.string 说明:提供一系列针对字符串类型的操作 目录: 方法 返回 说明 system.string.isBlank( string ) [True | False] 检测参 ...
- 142. O(1) Check Power of 2【LintCode by java】
Description Using O(1) time to check whether an integer n is a power of 2. Example For n=4, return t ...
- python常用命令—终端安装win32的两种方法
1, pip install pywin32 2, pip install pypiwin32
- kaldi HMM-GMM全部训练脚本分解
目录 train_mono.sh train_deltas.sh train_lda_mllt.sh train_sat.sh train_mono.sh 单音素训练脚本: //初始化,[topo f ...
- win10下搭建私链
首先要下载geth,下载地址:https://gethstore.blob.core.windows.net/builds/geth-windows-amd64-1.7.0-6c6c7b2a.exe ...
- nodejs笔记--模块篇(三)
文件模块访问方式通过require('/文件名.后缀') require('./文件名.后缀') requrie('../文件名.后缀') 去访问,文件后缀可以省略:以"/&qu ...
- DAY6敏捷冲刺
站立式会议 工作安排 (1)服务器配置 服务器端项目结构调整 (2)数据库配置 单词学习记录+用户信息 (3)客户端 客户端项目结构调整,代码功能分离 燃尽图 燃尽图有误,已重新修改,先贴卡片的界面, ...