一棵树,如果有序点对(x,y)之间路径的长度取模于3==0,那么ans0便加上这个长度;

  如果取模于3==1,那么ans1便加上这个长度;

  如果取模于3==2,那么ans2便加上这个长度;

让你求ans0,ans1,ans2;

输入格式:

第一行包括一个整数n,表示一共有n个点

下面n-1行,每一行分别输入三个整数a,b,v,代表从a到b有一条长度为v的路径,输入保证不出现环和重边

输出格式:

输出包含三个整数分别为三个答案里存的路径长度之和模1e9+7;

样例:

5

0  1  2

0  2  3

0  3  7

0  4  6

54  60  30

显然,这是一个树形DP,只要记录这个点的子树到这个点的距离的模数就好了;

注意状态转移时的边界;

#include <bits/stdc++.h>
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#define p 1000000007
#define inc(i,a,b) for(register int i=a;i<=b;i++)
#define dec(i,a,b) for(register int i=a;i>=b;i--)
using namespace std;
template<class nT>
inline void read(nT& x)
{
char c; while(c=getchar(),!isdigit(c));
x=c^48; while(c=getchar(),isdigit(c)) x=x*10+c-48;
}
int head[2000010],cnt;
class littlestar{
public:
int to;
int nxt;
int w;
void add(int u,int v,int gg){
to=v;
nxt=head[u];
w=gg;
head[u]=cnt;
}
}star[2000010];
int g[1000010][4];
void dfs(int u,int fa)
{
g[u][0]=1;
for(int i=head[u];i;i=star[i].nxt){
int v=star[i].to;
if(v==fa) continue;
dfs(v,u);
inc(j,0,2) g[u][(j+star[i].w%3)%3]+=g[v][j];
}
}
long long ans[5],f[1000010][4];
long long tmp[5],tot[5];
void dp(int u,int fa)
{
for(int i=head[u];i;i=star[i].nxt){
int v=star[i].to;
if(v==fa) continue;
dp(v,u);
tmp[0]=tmp[1]=tmp[2]=0;
tot[0]=tot[1]=tot[2]=0;
inc(j,0,2){
tmp[(j+star[i].w)%3]=(tmp[(j+star[i].w)%3]+f[v][j])%p;
tmp[(j+star[i].w)%3]=(tmp[(j+star[i].w)%3]+g[v][j]*star[i].w%p)%p;
tot[(j+star[i].w)%3]=(tot[(j+star[i].w)%3]+g[v][j])%p;
}
inc(j,0,2){
inc(k,0,2){
ans[(j+k)%3]=(ans[(j+k)%3]+tmp[j]*(g[u][k]-tot[k]))%p;
}
}
inc(j,0,2){
f[u][j]=(f[u][j]+tmp[j])%p;
}
}
}
int main()
{
int n; read(n);
inc(i,1,n-1){
int u,v,w; read(u); read(v); read(w);
++u; ++v;
star[++cnt].add(u,v,w);
star[++cnt].add(v,u,w);
}
dfs(1,0);
dp(1,0);
cout<<ans[0]*2%p<<" "<<ans[1]*2%p<<" "<<ans[2]*2%p;
}

友善的树形DP的更多相关文章

  1. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  2. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  3. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  4. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  5. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  6. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  7. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

  8. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  9. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

随机推荐

  1. BZOJ 2651 城市改建 树形DP+模拟?

    题意 给一颗树,删除一条边再加一条边,使它仍为一颗树且任意两点间的距离的最大值最小. 题目数据范围描述有问题,n为1或重建不能使任意两点距离最大值变小,可以输出任意答案. 分析 删除一条边后会使它变成 ...

  2. JavaWeb-SpringSecurity自定义登陆配置

    系列博文 项目已上传至guthub 传送门 JavaWeb-SpringSecurity初认识 传送门 JavaWeb-SpringSecurity在数据库中查询登陆用户 传送门 JavaWeb-Sp ...

  3. Java日志系统---Logger之简单入门

    Java 中自带的日志系统,今天抽空了解了一点,算是入了门,所以将自己的一些心得记录下来,以备日后查看,有兴趣的朋友,看到此文章,觉得有错误或需要添加的地方,请在下方评论留言,大家可以共同进步,谢谢: ...

  4. C++入门经典-例7.6-this指针,同一个类的不同对象数据

    1:对于类的非静态成员,每个对象都有自己的一份拷贝,即每个对象都有自己的数据成员,不过成员函数却是每个对象共享的.那么调用共享的成员函数如何找到自己的数据成员呢?答案是通过类中隐藏的this指针. 2 ...

  5. BeanFactory和ApplicationContext的区别+部分Spring的使用

    BeanFactory和ApplicationContext的区别 ApplicationContext 方式加载:创建容器的同时 容器初始化,容器所有的bean创建完毕   Spring容器中获取一 ...

  6. Docker进阶-快速扩容

    1.命令方式 在创建好的Swarm集群中运行nginx服务,并使用--replicas参数指定启动的副本数. docker service create --replicas 3 -p 80:80 - ...

  7. 【好书推荐】9、安卓Andorid编程吐血整理100+本

    点开即可

  8. kvm虚拟机操作相关命令及虚拟机和镜像密码修改

    虚拟机生命周期管理 1)查看kvm虚拟机状态 #virsh list --all 2)KVM虚拟机开机 # virsh start oeltest01 3)KVM虚拟机关机或断电 关机 默认情况下vi ...

  9. openstack共享组件--memcache缓存(2)

    一.缓存系统 一.静态web页面: 1.在静态Web程序中,客户端使用Web浏览器(IE.FireFox等)经过网络(Network)连接到服务器上,使用HTTP协议发起一个请求(Request),告 ...

  10. jenkins+git+gitlab+ansible实现持续集成自动化部署

    一.环境配置 192.168.42.8部署gitlab,节点一 192.168.42.9部署git,Jenkins,ansible服务器 192.168.42.10节点二 二.操作演示 ①gitlab ...