[杂题]CSUOJ1274Balls and Boxes
题意:中文题 题意不多赘述
值得注意的是n<m 不必考虑n==m的情况 (m是盒子个数, n是每次选取的盒子个数, 不要弄反了!)
这题一看就是同余方程
每次选取n个盒子放球 也就是说每次都增加n个球
最后m个盒子中球的个数相等, 也就是最终状态球的总数为m的倍数
于是 很容易能得到同余方程:sum+x*n=y*m (sum为出示状态共有sum个球)
其中x为 需要选x次盒子放球
y为 最终每个盒子有y个球
接下来只要解同余方程
若无解, 则无论怎样操作都不能达到这个目的
若有解 还需满足几个条件:
(首先需要记录一下:初始状态最多的盒子里有maxn个球, 最少的有minn个球)
y>=maxn 也就是最后每个盒子里的球的个数 肯定要大于或者等于初始状态的 盒子中有的球的最大个数
x>=y-minn 也就是 选盒子放球的次数 肯定要大于或者等于 最终状态每个盒子内球的个数 与 初始状态盒子中有的球的最小个数 之差
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <cctype>
#include <cmath>
#include <string>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
#include <queue>
#include <stack>
#include <vector>
#include <deque>
#include <set>
#include <map>
typedef long long LL;
typedef long double LD;
const double pi=acos(-1.0);
const double eps=1e-;
#define INF 0x3f3f3f
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
typedef pair<int, int> PI;
typedef pair<int, PI > PP;
#ifdef _WIN32
#define LLD "%I64d"
#else
#define LLD "%lld"
#endif
//#pragma comment(linker, "/STACK:1024000000,1024000000")
//LL quick(LL a, LL b){LL ans=1;while(b){if(b & 1)ans*=a;a=a*a;b>>=1;}return ans;}
//inline int read(){char ch=' ';int ans=0;while(ch<'0' || ch>'9')ch=getchar();while(ch<='9' && ch>='0'){ans=ans*10+ch-'0';ch=getchar();}return ans;}
inline void print(LL x){printf(LLD, x);puts("");}
//inline void read(LL &ret){char c;int sgn;LL bit=0.1;if(c=getchar(),c==EOF) return ;while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();sgn=(c=='-')?-1:1;ret=(c=='-')?0:(c-'0');while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');if(c==' '||c=='\n'){ ret*=sgn; return ; }while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;ret*=sgn;} void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(b)
{
ex_gcd(b, a%b, d, x, y);
LL tmp=x;
x=y;
y=tmp-(a/b)*y;
}
else
{
x=, y=, d=a;
return ;
}
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
int n, m;
scanf("%d%d", &n, &m);
int sum=, maxn=, minn=INT_MAX;
for(int i=;i<n;i++)
{
int a;
scanf("%d", &a);
sum+=a;
maxn=max(maxn, a);
minn=min(minn, a);
}
LL d, x, y;
ex_gcd(n, m, d, x, y);
if(sum%d)
printf("-1\n");
else
{
x*=sum/d;
y*=sum/d;
LL ans1=(maxn-x)*d/m;
LL ans2=(x+y-minn)*d/(n-m);
if((x+m/d*ans1)<maxn) ans1++;
if((n/d*ans2-y)<((x+m/d*ans2)-minn)) ans2++;
print(n/d*max(ans1, ans2)-y);
}
}
return ;
}
CSUOJ 1274
最后。。。以上是纯YY的结果。。。具体的证明还是直接看官方题解好了,反正我也证不出来(题解:http://acm.csu.edu.cn/csuacm/2013/04/)
[杂题]CSUOJ1274Balls and Boxes的更多相关文章
- 正睿OI DAY3 杂题选讲
正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...
- dp杂题(根据个人进度选更)
----19.7.30 今天又开了一个新专题,dp杂题,我依旧按照之前一样,这一个专题更在一起,根据个人进度选更题目; dp就是动态规划,本人认为,动态规划的核心就是dp状态的设立以及dp转移方程的推 ...
- wangkoala杂题总集(根据个人进度选更)
CQOI2014 数三角形 首先一看题,先容斥一波,求出网格内选三个点所有的情况,也就是C(n*m,3);然后抛出行里三点共线的方案数:C(n,3)*m; 同理就有列中三点共线的方案数:n*C(m,3 ...
- 2019暑期金华集训 Day6 杂题选讲
自闭集训 Day6 杂题选讲 CF round 469 E 发现一个数不可能取两次,因为1,1不如1,2. 发现不可能选一个数的正负,因为1,-1不如1,-2. hihoCoder挑战赛29 D 设\ ...
- Atcoder&CodeForces杂题11.7
Preface 又自己开了场CF/Atcoder杂题,比昨天的稍难,题目也更有趣了 昨晚炉石检验血统果然是非洲人... 希望这是给NOIP2018续点rp吧 A.CF1068C-Colored Roo ...
- Codeforces 杂题集 2.0
记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序 1326D2 - Prefix-Suffix Palindrome (Hard version) ...
- 【Java面试】-- 杂题
杂题 2019-11-03 21:09:37 by冲冲 1.类加载器的双亲委派机制 类加载器:把类通过类加载器加载到JVM中,然后转换成class对象(通过类的全路径来找到这个类). 双亲委派机制 ...
- 贪心/构造/DP 杂题选做Ⅱ
由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...
- 贪心/构造/DP 杂题选做Ⅲ
颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...
随机推荐
- 一个ASP函数库
<% '****************************** '类名: '名称:通用库 '日期:2008/10/28 '作者:by xilou '网址: '描述:通用库 '版权:转载请注 ...
- 要源码的快来啊,价值500的OA商业源码免费送给大家,望大家年底奖金多多......
功能介绍: 兼容IE6,7,8以上.GooleChrome.360及遨游等浏览器. 系统特色: 1.系统经过抗压测试. 2.语音提示功能. 3.支持office2007在线编辑. 4.强大的图形化工作 ...
- AlwaysOn实现只读路由
1.配置只读路由 ①配置A副本的只读路由属性(ReadOnly代表‘只读意向’) ALTER AVAILABILITY GROUP [testAG] MODIFY REPLICA ON N'WIN-1 ...
- Android系统简介(上):历史渊源
上个月,看到微信的一系列文章,讲到Linux的鼻祖-李纳斯的传记<Just for Fun>, 其人神乎其能, 其人生过程非常有趣,值得每个程序员细细品味. 而实际上,对我而已,虽然做软件 ...
- 转:ASP.NET MVC 3 and App_Code folder
问题: In ASP.NET Webform, App_Code is standardfolder to putting code and using it at run-time.But I th ...
- 如何从零开始实现一个soa远程调用服务基础组件
说起soa远程调用基础组件,最著名的莫过于淘宝的dubbo了,目前很多的大型互联网公司都有一套自己的远程服务调用分布式框架,或者是使用开源的(例如dubbo),或者是自己基于某种协议(例如hessia ...
- 用分治法实现大数乘法,加法,减法(java实现)
大数乘法即多项式乘法问题,求A(x)与B(x)的乘积C(x),朴素解法的复杂度O(n^2),基本思想是把多项式A(x)与B(x)写成 A(x)=a*x^m+b B(x)=c*x^m+d 其中a,b,c ...
- Headfirst设计模式的C++实现——状态模式(State)
state.h #ifndef _STATE_H_ #define _STATE_H_ class GumballMachine; class State { public: ; ; ; ; Stat ...
- Qt-获取主机网络信息之QHostAddress
QHostAddress类提供一个IP地址. 这个类提供一种独立于平台和协议的方式来保存IPv4和IPv6地址. QHostAddress通常与QTcpSocket,QTcpServer,QUdpSo ...
- mysql---字符集详解
常用的字符集包括ASCII ,GB2312 , GBK , UTF-8 ,Unicode 首先要知道 ASCII编码: 用一个字节来标识0-9的数字.大小写字母.及一些标点和不可见字符.1个字节8位, ...