BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)
Description
给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。
Input
第一行为正整数T,代表数据组数。
Output
输出一个整数,表示至少要走多少次。
Sample Input
3 3
0 1 5
5 0 0
1 0 0
Sample Output
HINT
N<=1000,M<=1000.每个格子中财宝数不超过10^6
Solution
由$Dilworth$定理可知,最小链覆盖=最大反链=最大独立集
当时我就懵逼了……啥是反链啊?……
链是一个点的集合,这个集合中任意两个元素$v$、$u$,要么$v$能走到$u$,要么$u$能走到$v$。
反链就是是一个点的集合,这个集合中任意两点谁也不能走到谁。= =
那么左上角为$(1,1)$,右下角为$(n,m)$,设$f[i][j]$表示矩形$(i,j),(1,m)$内的最长反链。
$f[i][j]=max(f[i][j+1],f[i-1][j],f[i-1][j+1]+a[i][j])$
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1009)
using namespace std; int T,n,m,a[N][N],f[N][N]; int main()
{
scanf("%d",&T);
while (T--)
{
memset(f,,sizeof(f));
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
scanf("%d",&a[i][j]);
for (int i=; i<=n; ++i)
for (int j=m; j>=; --j)
f[i][j]=max(max(f[i][j+],f[i-][j]),f[i-][j+]+a[i][j]);
printf("%d\n",f[n][]);
}
}
BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)的更多相关文章
- BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】
题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...
- [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)
题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...
- BZOJ3997 TJOI2015组合数学(动态规划)
copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...
- BZOJ3997: [TJOI2015]组合数学(网络流)
3997: [TJOI2015]组合数学 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 405 Solved: 284[Submit][Status ...
- BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)
BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...
- bzoj3997[TJOI2015]组合数学(求最长反链的dp)
组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...
- bzoj3997[TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...
- bzoj千题计划298:bzoj3997: [TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...
- P1020 导弹拦截 /// DP Dilworth定理 LIS、LDS优化
题目大意: https://www.luogu.org/problemnew/show/P1020 Dliworth有两个互相对偶的定理:U的链划分使用的最少集合数,等于它的最大反链长度.(1)U的反 ...
随机推荐
- spring boot2 使用log4j2
spring boot默认使用的是logback,看到好多地方说logback比log4j耗性能,具体么我也没试过,不过个人还是log4j用得更多. 先看pom依赖 <dependency> ...
- bnu 4060 奇偶性,异或运算
Plants vs. Zombies Time Limit: 5000ms Memory Limit: 2048KB 64-bit integer IO format: %lld Jav ...
- C#学习笔记(基础知识回顾)之值类型与引用类型转换(装箱和拆箱)
一:值类型和引用类型的含义参考前一篇文章 C#学习笔记(基础知识回顾)之值类型和引用类型 1.1,C#数据类型分为在栈上分配内存的值类型和在托管堆上分配内存的引用类型.如果int只不过是栈上的一个4字 ...
- Redis实现分布式锁1
Jedis结合setNX方法实现分布式锁 public boolean lock(String key, int exprie) { try { exprie = exprie <= 0 ? 6 ...
- 线程与全局解释器锁(GIL)
一.线程概论 1.何为线程 每个进程有一个地址空间,而且默认就有一个控制线程.如果把一个进程比喻为一个车间的工作过程那么线程就是车间里的一个一个流水线. 进程只是用来把资源集中到一起(进程只是一个资源 ...
- 使用jQuery获取Dribbble的内容
Introduction As a web developer, third party API integration is something you will have to face. Esp ...
- css中:not()选择器和jQuery中.not()方法
因为老是将这两个的not方法弄混,所以写一下备忘. css中:not()选择器用法 :not 伪类选择器可以筛选不符合表达式的元素,:not(selector) 其中的selector为css选择器 ...
- HTML中的图片
在一开始时,Web仅有文本,那真的是很无趣.幸运的是,没过多久网页上就能嵌入图片和其他有趣的内容了.虽然还有许多其他类型的多媒体,但是从地位比较低的<img>元素开始是符合逻辑的,它常常被 ...
- SSO单点登录实现原理
SSO单点登录实现原理 只是简要介绍下基于java的实现过程,不提供完整源码,明白了原理,我相信你们可以自己实现.sso采用客户端/服务端架构,我们先看sso-client与sso-server要实现 ...
- error:将字符串转换为 uniqueidentifier 时失败
sql server查询中出现 将字符串转换为 uniqueidentifier 时失败异常 原因为id设置为uniqueidentifier 字段,在where查询时需要做转换cast(id as ...