【LeetCode】062. Unique Paths
题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题解:
Solution 1 ()
class Solution {
public:
int uniquePaths(int m, int n) {
if(m< || n<) return ;
if(m == && n == ) return ;
vector<vector<int>> dp(m, vector<int> (n,));
for(int i=; i<m; ++i) {
for(int j=; j<n; ++j) {
dp[i][j] = dp[i-][j] + dp[i][j-];
}
}
return dp[m-][n-];
}
};
用一维数组存储,d[j] = d[j] + d[j-1];这里的等号右边d[j]相当于d[i-1][j],d[j-1]相当于d[i][j-1];
Solution 2 ()
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n, );
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
dp[j] += dp[j - ];
}
}
return dp[n - ];
}
};
First of all you should understand that we need to do n + m - 2 movements : m - 1 down, n - 1 right, because we start from cell (1, 1).
Secondly, the path it is the sequence of movements( go down / go right),
therefore we can say that two paths are different
when there is i-th (1 .. m + n - 2) movement in path1 differ i-th movement in path2.
So, how we can build paths.
Let's choose (n - 1) movements(number of steps to the right) from (m + n - 2),
and rest (m - 1) is (number of steps down).
I think now it is obvious that count of different paths are all combinations (n - 1) movements from (m + n-2). (from here)
Solution 3 ()
class Solution {
public:
int uniquePaths(int m, int n) {
int N = n + m - ;// how much steps we need to do
int k = m - ; // number of steps that need to go down
double res = ;
// here we calculate the total possible path number
// Combination(N, k) = n! / (k!(n - k)!)
// reduce the numerator and denominator and get
// C = ( (n - k + 1) * (n - k + 2) * ... * n ) / k!
for (int i = ; i <= k; i++)
res = res * (N - k + i) / i;
return (int)res;
}
};
【LeetCode】062. Unique Paths的更多相关文章
- 【LeetCode】63. Unique Paths II 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...
- 【LeetCode】62. Unique Paths 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...
- 【LeetCode】63. Unique Paths II
Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...
- 【LeetCode】62. Unique Paths
Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...
- 【LeetCode】063. Unique Paths II
题目: Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. H ...
- 【LeetCode】980. Unique Paths III解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 回溯法 日期 题目地址:https://leetco ...
- 【leetcode】980. Unique Paths III
题目如下: On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square. Ther ...
- 【一天一道LeetCode】#63. Unique Paths II
一天一道LeetCode (一)题目 Follow up for "Unique Paths": Now consider if some obstacles are added ...
- 【LeetCode】95. Unique Binary Search Trees II 解题报告(Python)
[LeetCode]95. Unique Binary Search Trees II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzh ...
随机推荐
- jQuery--基础(操作标签)
jQuery-样式操作 .css() 可以直接使用来获取css的值 .css("color") 使用方法,如果想给查找到的标签添加样式: .css("colo ...
- Spark源码分析之五:Task调度(一)
在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的 ...
- linux SPI驱动——spidev之driver(六)
一: spidev_init注册spidev 1: static int __init spidev_init(void) 2: { 3: int status; 4: 5: /* Claim o ...
- LeetCode108_Convert SortedArray to BinarySearchTree(将有序数组转成二叉排序树) Java题解
题目: Given an array where elements are sorted in ascending order, convert it to a height balanced BST ...
- HDU 5374 Tetris (2015年多校比赛第7场)
1.题目描写叙述:点击打开链接 2.解题思路:本题要求模拟俄罗斯方块游戏.然而比赛时候写了好久还是没过. 后来补题发现原来是第四步的逻辑实现写错了... 题目中要求假设一整行能够消除,那么仍然运行该步 ...
- python 基础 5.0 python类一般形式
一. 类的一般形式 创建类我们一般使用class 关键字来创建一个类,class 后面跟类型名字,可以自定义,最后以冒号结尾,如下所示: #/usr/bin/python #coding=utf- ...
- 【BZOJ4653】[Noi2016]区间 双指针法+线段树
[BZOJ4653][Noi2016]区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含 ...
- 九度OJ 1033:继续xxx定律 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4987 解决:1201 题目描述: 当n为3时,我们在验证xxx定律的过程中会得到一个序列,3,5,8,4,2,1,将3称为关键数, ...
- Kibana + ElasticSearch
上面一张介绍了ElasticSearch的安装和简单用法. 现在应该都知道ElasticSearch是用来做全文搜索的,那今天我就简单介绍下Kibana. 它是专门用来查看ElasticSearch内 ...
- 【ELK】Elasticsearch的备份和恢复
非原创,只是留作自己查询使用,转自http://keenwon.com/1393.html Elasticsearch的备份和恢复 备份 Elasticsearch的一大特点就是使用简单,api也比较 ...