BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

Description

小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和。
但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案。
小C是一个非常有自知之明的人,他知道自己的算法完全不对,所以并不关心正确率,他只关心求出的解的期望值,
现在请你帮他解决这个问题,由于答案可能非常复杂,所以你只需要输出答案乘上n!后对998244353取模的值,显然这是个整数。
注:最大前缀和的定义:i∈[1,n],Sigma(aj)的最大值,其中1<=j<=i

Input

第一行一个正整数nnn,表示序列长度。
第二行n个数,表示原序列a[1..n],第i个数表示a[i]。
1≤n≤20,Sigma(|Ai|)<=10^9,其中1<=i<=N

Output

输出一个非负整数,表示答案。

Sample Input

2
-1 2

Sample Output

3

设f[i]表示选择的数的状态为i,有多少个排列满足全选是最大的前缀和。
设sum[i]表示选择的数的状态为i的和。
设g[i]表示选择的数的状态为i,有多少个排列满足任意前缀和都小于等于0。
那么答案=$\sum sum[i]*f[i]*g[mask-i]$。
考虑由f[i]推出f[i|(1<<j-1)]。相当于在序列前面加上一个数,保证所有前缀都大于0,这个数就可以加进去。
由g[i]推出g[i|(1<<j-1)],相当于在后面加上一个数使得总和仍小于等于0。
DP即可。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define mod 998244353
typedef long long ll;
int a[22],n;
ll sum[1<<20],f[1<<20],g[1<<20];
void dfs(int dep,int sta,ll s) {
if(dep==n) {sum[sta]=s; return ;}
dfs(dep+1,sta|(1<<dep),s+a[dep+1]);
dfs(dep+1,sta,s);
}
int main() {
scanf("%d",&n);
int i,mask=(1<<n)-1,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]),f[1<<(i-1)]=1;
dfs(0,0,0); f[0]=g[0]=1;
for(i=0;i<=mask;i++) {
for(j=1;j<=n;j++) {
if(!(i&(1<<(j-1)))) {
if(sum[i]>0) f[i|(1<<(j-1))]=(f[i|(1<<(j-1))]+f[i])%mod;
if(sum[i]+a[j]<=0) g[i|(1<<(j-1))]=(g[i|(1<<(j-1))]+g[i])%mod;
}
}
}
ll ans=0;
for(i=0;i<=mask;i++) ans=(ans+sum[i]*f[i]%mod*g[mask-i]%mod+mod)%mod;
printf("%lld\n",ans);
}

BZOJ_5369_[Pkusc2018]最大前缀和_状压DP的更多相关文章

  1. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  2. LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】

    题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...

  3. [PKUSC2018]最大前缀和(状压DP)

    题目大意:求给定的 $n$ 个数的所有排列的最大前缀和(不能为空)之和对 $10^9+7$ 取模的值. $1\le n\le 20,1\le\sum|a_i|\le 10^9$. 神级DP.杂题选讲的 ...

  4. [LOJ6433][PKUSC2018]最大前缀和:状压DP

    分析 我们让每个数列在第一个取到最大前缀和的位置被统计到. 假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有: 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数 ...

  5. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  6. BZOJ_2064_分裂_状压DP

    BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  9. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

随机推荐

  1. Computers(线性DP)

    描述 Everybody is fond of computers, but buying a new one is always a money challenge. Fortunately, th ...

  2. CSU1030素数槽

    Description 处于相邻的两个素数p和p + n之间的n - 1个连续的合数所组成的序列我们将其称为长度为n的素数槽.例如,‹24, 25, 26, 27, 28›是处于素数23和素数29之间 ...

  3. 为docker容器设置独立ip

    docker 1.12使用新版macvlan设置与宿主机同网段ip ****************************************** 由于开发的一些特殊需求,需要将容器部署在与宿主 ...

  4. asp.net网页防刷新重复提交、防后退解决办法!

    原文发布时间为:2008-10-14 -- 来源于本人的百度文章 [由搬家工具导入] 1、提交后 禁用提交按钮(像CSDN这样)2、数据处理成功马上跳转到另外一个页面! 操作后刷新的确是个问题,你可以 ...

  5. P1918 保龄球 洛谷

    https://www.luogu.org/problem/show?pid=1918 题目描述 DL 算缘分算得很烦闷,所以常常到体育馆去打保龄球解闷.因为他保龄球已经打了几十年了,所以技术上不成问 ...

  6. jmeter的master远程运行和停止slave

    jmeter可以部署成master-slave或者叫client-server模式,一个master(client)可以同时控制多个slave(server). 在linux系统下,master(cl ...

  7. Android实战简易教程-第三十九枪(第三方短信验证平台Mob和验证码自己主动填入功能结合实例)

    用户注冊或者找回password时通常会用到短信验证功能.这里我们使用第三方的短信平台进行验证实例. 我们用到第三方短信验证平台是Mob,地址为:http://mob.com/ 一.注冊用户.获取SD ...

  8. Capture and report JavaScript errors with window.onerror

    原文:https://blog.sentry.io/2016/01/04/client-javascript-reporting-window-onerror.html onerror is a sp ...

  9. Office WORD如何取消开始工作右侧栏

    工具-选项-视图,取消勾选"启动任务窗格"  

  10. HBase单机环境搭建

    在搭建HBase单机环境之前,首先你要保证你已经搭建好Java环境: $ java -version java version "1.8.0_51" Java(TM) SE Run ...