6大数据实战系列-sparkSql实战
sparkSql两个最重要的类SqlContext、DataFrame,DataFrame功能强大,能够与rdd互转换、支持sql操作如sql().where.order.join.groupBy.limit等。
SparkSql的查询响应性能是hive的几何级倍数,并且SparkSql支持多种数据源操作包括hive、hdfs、rdd、json、mysql,本文先讲解hive、hdfs、rdd、json4种数据源操作。
1 基础环境
- 1.1 版本预览
Cnetos 6.5 已安装
Hadoop 2.8 已安装集群
Hive 2.3 待安装
Mysql 5.6 已安装
Spark 2.1.1 已安装
- 1.2 机器环境
192.168.0.251 slave
192.168.0.252 master
Hadoop:hadoop已做双机无密码登录
- 1.3 工作路径
Hadoop:/home/data/app/hadoop/hadoop-2.8.0/etc/hadoop
Spark:/home/data/app/hadoop/spark-2.1.1-bin-hadoop2.7
Hive数据路径: /user/hive/warehouse/
2 初始化配置
- 2.1 spark连接hive
节点Spark conf下增加hive-site.xml
<configuration>
<property>
<name>hive.metastore.uris</name>
<value>thrift://shulaibao2:9083</value>
<description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
</property>
</configuration>
- 2.2 启动hive支持metastore
nohup hive --service metastore > metastore.log 2>&1 &
- 2.3 spark集群重启
./stop-all.sh
./start-all.sh
3 sparkSql - hive数据源
- 3.1 sparkSql操作
./spark-sql --master spark://shulaibao2:7077 --executor-memory 1g
按年统计交易订单数量、交易金额
select c.theyear,count(distinct a.ordernumber),sum(b.amount) from tbStock a join tbStockDetail b on a.ordernumber=b.ordernumber
join tbDate c on a.dateid=c.dateid
group by c.theyear order by c.theyear;
计算每年销售额最大的订单
select c.theyear,max(d.sumofamount) from tbDate c join (select a.dateid,a.ordernumber,sum(b.amount) as sumofamount from tbStock a join tbStockDetail b on a.ordernumber=b.ordernumber group by a.dateid,a.ordernumber ) d on c.dateid=d.dateid group by c.theyear sort by c.theyear;
- 3.2 spark shell编码
val hiveQuery = sql("select * from hive_data.tbstock limit 10")
hiveQuery.collect()
res14: Array[org.apache.spark.sql.Row] = Array([BYSL00000893,ZHAO,2007-8-23], [BYSL00000897,ZHAO,2007-8-24], [BYSL00000898,ZHAO,2007-8-25], [BYSL00000899,ZHAO,2007-8-26], [BYSL00000900,ZHAO,2007-8-26], [BYSL00000901,ZHAO,2007-8-27], [BYSL00000902,ZHAO,2007-8-27], [BYSL00000904,ZHAO,2007-8-28], [BYSL00000905,ZHAO,2007-8-28], [BYSL00000906,ZHAO,2007-8-28])
4 sparkSql - RDD数据源
- 4.1 hdfs数据源
import spark.implicits._
case class Person(name: String, age: Int)
val peopleDF =
spark.sparkContext.textFile("hdfs://shulaibao2:9010/home/hadoop/upload/test/people.txt").map(_.split(",")).map(attributes => Person(attributes(0), attributes(1).trim.toInt)).toDF()
peopleDF.createOrReplaceTempView("people") : registerTempTable - deprecation
val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 24 AND 40")
teenagersDF.map(teenager => "Name: " + teenager(0)).show()
teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
- 4.2 RDD数据源
import spark.implicits._
case class Person(name:String, age:Int, state:String)
sc.parallelize(Person("Michael",29,"CA")::Person("Andy",30,"NY")::Person("Justin",19,"CA")::Person("Justin",25,"CA")::Nil).toDF().registerTempTable("people")
val query= sql("select * from people") : @return dataFrame
查询的schem
query.printSchema
query.collect() : @return Array[org.apache.spark.sql.Row]
查看整个运行计划:
query.queryExecution
5 json 数据源
hadoop fs -put /data/software/sougou/jsonPerson.json /home/hadoop/upload/test/
spark.sqlContext.jsonFile("/home/hadoop/upload/test/jsonPerson.json").registerTempTable("jsonPerson")
val jsonQuery = sql("select * from jsonPerson")
查看结构:
jsonQuery.printSchema
6大数据实战系列-sparkSql实战的更多相关文章
- 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...
- 大数据学习系列之五 ----- Hive整合HBase图文详解
引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...
- 大数据学习系列之六 ----- Hadoop+Spark环境搭建
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...
- 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...
- 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...
- 大数据小白系列——HDFS(4)
这里是大数据小白系列,这是本系列的第四篇,来看一个真实世界Hadoop集群的规模,以及我们为什么需要Hadoop Federation. 首先,我们先要来个直观的印象,这是你以为的Hadoop集群: ...
- 大数据小白系列——HDFS(3)
这里是大数据小白系列,这是本系列的第三篇,介绍HDFS中NameNode选举,JournalNode等概念. 上一期我们说到了为解决NameNode(下称NN)单点失败问题,HDFS中使用了双NN的机 ...
- 大数据小白系列——HDFS(2)
这里是大数据小白系列,这是本系列的第二篇,介绍一下HDFS中SecondaryNameNode.单点失败(SPOF).以及高可用(HA)等概念. 上一篇我们说到了大数据.分布式存储,以及HDFS中的一 ...
- 大数据小白系列——HDFS(1)
[注1:结尾有大福利!] [注2:想写一个大数据小白系列,介绍大数据生态系统中的主要成员,理解其原理,明白其用途,万一有用呢,对不对.] 大数据是什么?抛开那些高大上但笼统的说法,其实大数据说的是两件 ...
- 基于Hadoop2.0、YARN技术的大数据高阶应用实战(Hadoop2.0\YARN\Ma
Hadoop的前景 随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握H ...
随机推荐
- python中的强制等待、隐性等待、显性等待
运行结果过程中出现Unable to locate element时,1.先确定元素是否定位有误.2.再确定运行过程中是否等待不到位,可以截图,查看查找时页面的状态. 1.使用强制等待 --辅助 2. ...
- 8.redis存储token以及springboot整合Jwt
1.总结: 昨天主要是下载安装和使用redis去存储token,但在创建redis的新建的时候出现了host异常,原因是没有将服务中的进程关掉,再重新打开redis的server,再打开cli: 回顾 ...
- Semantic Kernel 入门系列:🔥Kernel 内核和🧂Skills 技能
理解了LLM的作用之后,如何才能构造出与LLM相结合的应用程序呢? 首先我们需要把LLM AI的能力和原生代码的能力区分开来,在Semantic Kernel(以下简称SK),LLM的能力称为 sem ...
- BISS-C 8通道采集renishaw传感器及其CRC校验
背景 BISS-C 是常见的位置编码器传输协议,相对于传统的协议,支持更快的传输速度,电器接口为电压差分RS422或者485,抗干扰能力较强,在精密位置传输中应用广泛. 下述信息源自雷尼绍 典型的请求 ...
- layUI之树状表格异步加载组件treetableAsync.js(基于treetable.js)
目录 概述 1. 使用说明 2. 使用需知 2.1 本组件依赖于treetable.js[重中之重] 2.2 本组件基于layUIAdmin进行使用 2.3 本组件的方法支持treetable.js的 ...
- phpcm v9 任意调用分页/phpcm v9首页调用分页不起作用或者乱码
默认如下: {pc:content action="lists" catid="1" num="10" order="id DES ...
- CS144 计算机网络 Lab0:Networking Warmup
前言 本科期间修读了<计算机网络>课程,但是课上布置的作业比较简单,只是分析了一下 Wireshark 抓包的结构,没有动手实现过协议.所以最近在哔哩大学在线学习了斯坦福大学的 CS144 ...
- lua变量、数据类型、if判断条件和数据结构table以及【lua 函数】
一.lua变量[ 全局变量和局部变量和表中的域] Lua 变量有三种类型:全局变量和局部变量和表中的域. 全局变量:默认情况下,Lua中所有的变量都是全局变量. 局部变量:使用local 显式声明在函 ...
- springCloud项目搭建版本选择
1.查看spring cloud的版本 https://spring.io/projects/spring-cloud#learn 选择spring boot版本 https://mvnreposit ...
- 解决Godot使用VsCode编写C#代码,智能提示不见了[一问随笔]
问题: 我的项目采用了godot + visual studio code + C#,有天突然换引擎,从Godot4.0.0升级到Godot4.0.2,visual studio code 突然不给代 ...