【BZOJ1025】[SCOI2009]游戏(动态规划)

题面

BZOJ

洛谷

题解

显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\)。

问题等价于把\(n\)拆分成若干个数,他们的\(lcm\)有多少种不同的情况。那么显然还可以变成有多少个数的\(\sum_{i}p_i^{a_i}\le n\)

这样子随便\(dp\)一下就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 1010
int n,pri[MAX],tot;
bool zs[MAX];
void pre()
{
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(!i%pri[j])break;
}
}
}
ll f[MAX][MAX],ans;
int main()
{
cin>>n;pre();
f[0][0]=1;
for(int i=1;i<=tot;++i)
for(int j=0;j<=n;++j)
if(f[i-1][j])
for(int k=1;k+j-(k==1)<=n;k*=pri[i])
f[i][j+(k-(k==1))]+=f[i-1][j];
for(int i=0;i<=n;++i)ans+=f[tot][i];
cout<<ans<<endl;
return 0;
}

【BZOJ1025】[SCOI2009]游戏(动态规划)的更多相关文章

  1. bzoj1025 [SCOI2009]游戏 动态规划

    题目描述 对于一些长度为n的排列,将其作为一个置换,那么可能有一个自置换的次数使其回到1,2,3,...,n的情况.求对于所有能够回到1,2,3..,n的排列,不同的次数共有多少种. 题解来自黄学长 ...

  2. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  3. [BZOJ1025] [SCOI2009]游戏 解题报告

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  4. BZOJ1025: [SCOI2009]游戏

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  5. [bzoj1025][SCOI2009]游戏 (分组背包)

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...

  6. BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】

    题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...

  7. bzoj1025: [SCOI2009] 游戏 6

    DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)

    传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...

  10. bzoj1025(SCOI2009)游戏——唯一分解的思路与应用

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 可以认为对应的值之间连边,就连成了一个有一个或几个环的图.列数就是每个环里点数的lcm ...

随机推荐

  1. cocos2d-x 2.2.3 建工程

    2.2以后不再使用模板安装了. 打开终端,进入cocos2d-x目录下的tools/project-creator,执行命令 ./create_project.py -project [项目名] -p ...

  2. 64位RHEL5系统上运行yum出现"This system is not registered with RHN”的解决方法

    在红帽EL5上运行yum,提示“This system is not registered with RHN”,意思是没有在官网上注册,不能下载RH的软件包,替代方案是采用centos源. 1.卸载r ...

  3. MiZ702学习笔记8——让MiZ702变身PC的方法

    首先你需要一个安装好的linux系统,这里我用的是Ubuntu的虚拟机.VMWare的话,选择较高版本的成功率会高些(当然根据自己电脑的配置进行选择). 打开Ubuntu的虚拟机,找到一个叫做Disk ...

  4. RegExp,实现匹配合法时间(24小时制)的正则表达式

    合法时间格式  00:00:00 - 23:59:59   格式分析:H + ":" + M + ":" + S   H-分析: 00:00:00 - 09:5 ...

  5. C++ STL 学习笔记__(8)map和multimap容器

    10.2.9 Map和multimap容器 map/multimap的简介 ²  map是标准的关联式容器,一个map是一个键值对序列,即(key,value)对.它提供基于key的快速检索能力. ² ...

  6. 未能使用“Csc”任务的输入参数初始化该任务

    今天.NetCore2.1版本,建立Asp.net Core web应用程序项目时,报以下错误: 未能使用“Csc”任务的输入参数初始化该任务. “Csc”任务不支持“SharedCompilatio ...

  7. winform 保存文件 打开文件 选择文件 字体样式颜色(流 using System.IO;)

    string filePath = ""; private void 保存SToolStripMenuItem_Click(object sender, EventArgs e) ...

  8. 金蝶K3 11.0 WISE版本盘点机PDA条码数据采集器仓库条码管理

  9. CentOS-7.x Yum Repo Mirror

    一. 环境 1.1 主机信息 主机 OS Storage 备注 100.64.140.101 centos 7.6 /dev/sdb > 100GB 1.selinux disable; 2.放 ...

  10. Notes of Daily Scrum Meeting(12.8)

    今日团队任务总结: 团队成员 今日团队工作 陈少杰 使用例子对json数据进行解析 王迪 确定搜索功能的接口 金鑫 对布局文件进行协助修改 雷元勇 开始进行搜索功能的代码实现 高孟烨 按照学长的样本对 ...