Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 40 years. And, in many ways, the first real breakthroughs have only come in the last decade or so, with the Kinect being one of the crown jewels of these recent developments.
One major product of the last 40 years of computer vision research is an open source library called OpenCV (http://opencv.willowgarage.com).
And, lucky for us, there’s a great library that makes it really easy to use OpenCV with Processing: OpenCV for Processing http://ubaa.net/shared/processing/opencv/).
The documentation for that library will get you started, and O’Reilly’s book on the topic is the definitive reference: Learning OpenCV by Gary Bradski and Adrian Kaehler (http://shop.oreilly.com/product/9780596516130.do).
OpenCV’s tools are designed to process individual images. While we can use them to analyze recorded footage or live video, very few of them actually account for the movement of objects over time. In the last decade or so, though, researchers have developed new techniques that use the time dimension of oving images to extract additional information. This has led to a number of breakthrough techniques including camera tracking, panorama stitching, and 3D scene reconstruction. All of these applications are based on the fundamental idea called “feature detection.” The software starts with a single still frame. It detects small pieces of this frame that are particularly recognizable, called “features.” Then, when examining subsequent frames, the software looks for the same features in adjacent
parts of the image to see if they’ve moved. If these features correspond to parts of the world that are themselves fixed (for example, the corner of a windowsill or the edge of fence post), then the movement of the features tells you about the movement of the camera itself. If you track enough of these features, you can combine the multiple frames into a single panorama, calculate the movement of the camera, or if your camera is a depth camera, build a full 3D reconstruction of the entire scene or room.
If you want to learn more about feature tracking and the other advanced techniques that have arisen in recent computer vision research, I highly recommend Computer Vision: Algorithms and Applications by Richard Szeliski of Microsoft Research (http://szeliski.org/Book). It presents a rigorous approach to the contemporary state of the art. The book arose from Szeliski’s teaching work at the University of Washington computer science department and so definitely has some math in it. However, if you’re excited about the field, and you go slowly and use the Internet to fill in the gaps in your background, there’s no better way to really dive deeply into the field.
Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg的更多相关文章
- 关于《master opencv with practical computer vision projects》的源代码
很多读者都在向我要<master opencv with practical computer vision projects>的源代码,现向读者公布,具体源代码地址如下: https:/ ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- Computer Vision Resources
Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...
- Computer Vision Tutorials from Conferences (3) -- CVPR
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...
- code and dataset resources of computer vision
From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustiv ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- Computer Vision Tutorials from Conferences (2) -- ECCV
ECCV 2012 (http://eccv2012.unifi.it/program/tutorials/) Vision Applications on Mobile using OpenCVGa ...
- [转载]Three Trending Computer Vision Research Areas, 从CVPR看接下来几年的CV的发展趋势
As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer V ...
- Computer Vision 学习 -- 图像存储格式
本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是 ...
随机推荐
- python 数据处理学习pandas之DataFrame
请原谅没有一次写完,本文是自己学习过程中的记录,完善pandas的学习知识,对于现有网上资料的缺少和利用python进行数据分析这本书部分知识的过时,只好以记录的形势来写这篇文章.最如果后续工作定下来 ...
- 理解 OpenStack 高可用(HA)(1):OpenStack 高可用和灾备方案 [OpenStack HA and DR]
本系列会分析OpenStack 的高可用性(HA)概念和解决方案: (1)OpenStack 高可用方案概述 (2)Neutron L3 Agent HA - VRRP (虚拟路由冗余协议) (3)N ...
- ::before和::after伪元素的用法
一.介绍 css3为了区分伪类和伪元素,伪元素采用双冒号写法. 常见伪类——:hover,:link,:active,:target,:not(),:focus. 常见伪元素——::first-let ...
- tagfield
- C++学习笔记(3)
本学习笔记是C++ primer plus(第六版)学习笔记.是C++学习笔记(2)的后续.复习C++基础知识的可以瞄瞄. 转载请注明出处http://www.cnblogs.com/zrtqsk/p ...
- 新书《编写可测试的JavaScript代码 》出版,感谢支持
本书介绍 JavaScript专业开发人员必须具备的一个技能是能够编写可测试的代码.不管是创建新应用程序,还是重写遗留代码,本书都将向你展示如何为客户端和服务器编写和维护可测试的JavaScript代 ...
- EasyUI datagrid : 启用行号、固定列及多级表头后,头部行号位置单元格错位的问题
症状如图: 上图中,行号列与checkbox 列融合了.解决方法是在datagrid 的 onLoadSuccess 事件中加入如下代码: var opts = $(this).datagrid('o ...
- strtol 函数用法
strtol是一个C语言函数,作用就是将一个字符串转换为长整型long,其函数原型为: long int strtol (const char* str, char** endptr, int bas ...
- js版弹力球实例
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>弹 ...
- 循环队列java实现
public class SeqHeap { Object[] data; int font; int rear; int maxSize; public SeqHeap(int maxSize) { ...