Following Orders
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4902   Accepted: 1982

Description

Order is an important concept in mathematics and in computer science. For example, Zorn's Lemma states: ``a partially ordered set in which every chain has an upper bound contains a maximal element.'' Order is also important in reasoning about the fix-point semantics of programs.

This problem involves neither Zorn's Lemma nor fix-point semantics, but does involve order. 
Given a list of variable constraints of the form x < y, you are to write a program that prints all orderings of the variables that are consistent with the constraints.

For example, given the constraints x < y and x < z there are two orderings of the variables x, y, and z that are consistent with these constraints: x y z and x z y. 

Input

The input consists of a sequence of constraint specifications. A specification consists of two lines: a list of variables on one line followed by a list of contraints on the next line. A constraint is given by a pair of variables, where x y indicates that x < y.

All variables are single character, lower-case letters. There will be at least two variables, and no more than 20 variables in a specification. There will be at least one constraint, and no more than 50 constraints in a specification. There will be at least one, and no more than 300 orderings consistent with the contraints in a specification.

Input is terminated by end-of-file. 

Output

For each constraint specification, all orderings consistent with the constraints should be printed. Orderings are printed in lexicographical (alphabetical) order, one per line.

Output for different constraint specifications is separated by a blank line. 

Sample Input

a b f g
a b b f
v w x y z
v y x v z v w v

Sample Output

abfg
abgf
agbf
gabf wxzvy
wzxvy
xwzvy
xzwvy
zwxvy
zxwvy

Source

——————————————————我是分割线——————————————————————————————
这题就是一个给定部分顺序,来确定整体顺序的拓扑排序。
但一般的拓扑排序只找出一种符合要求的序列,这题要求找出所有符合要求的序列,这就有点尴尬,
所以还得加上回溯算法。最后对求出的所有符合要求的序列进行排序输出就可以了。
(顺便练习一下sstream)
 /*
Problem:
OJ:
User: S.B.S.
Time:
Memory:
Length:
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<sstream>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<functional>
#include<bitset>
#include<vector>
#include<list>
#include<map>
#define F(i,j,k) for(int i=j;i<=k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define maxn 10001
#define inf 0x3f3f3f3f
#define maxm 1001
#define mod 998244353
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int a[maxn],d[maxn];
int pos[maxn],cnt[maxn][];
bool vis[maxn];
inline void dfs(int u)
{
if(u>n){
F(i,,n) cout<<(char)a[i];
cout<<endl;
return;
}
F(i,,n){
if(!vis[i]){
a[u]=d[i];
pos[a[u]]=u;
vis[i]=true;
bool flag=true;
for(int j=;j<=m&&flag;j++)
{
int aa=cnt[j][],bb=cnt[j][];
if(pos[aa]==||pos[bb]==||pos[aa]<pos[bb]);
else flag=false;
}
if(flag) dfs(u+);
pos[a[u]]=;
vis[i]=false;
}
}
}
int main()
{
// std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
string s;
istringstream ss;
char aa,bb,cc;
while(getline(cin,s))
{
M(vis,);M(pos,);
n=m=;ss.clear();
ss.str(s);
while(ss>>cc) d[++n]=cc;
sort(d+,d+n+);
getline(cin,s);
ss.clear();
ss.str(s);
while(ss>>aa>>bb){
cnt[++m][]=aa;
cnt[m][]=bb;
}
dfs();
cout<<endl;
}
return ;
}

poj 1270

POJ 1270 Following Orders的更多相关文章

  1. POJ 1270 Following Orders 拓扑排序

    http://poj.org/problem?id=1270 题目大意: 给你一串序列,然后再给你他们部分的大小,要求你输出他们从小到大的所有排列. 如a b f g 然后 a<b ,b< ...

  2. poj 1270 Following Orders (拓扑排序+回溯)

    Following Orders Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5473   Accepted: 2239 ...

  3. POJ 1270 Following Orders (拓扑排序,dfs枚举)

    题意:每组数据给出两行,第一行给出变量,第二行给出约束关系,每个约束包含两个变量x,y,表示x<y.    要求:当x<y时,x排在y前面.让你输出所有满足该约束的有序集. 思路:用拓扑排 ...

  4. POJ 1270 Following Orders(拓扑排序)题解

    Description Order is an important concept in mathematics and in computer science. For example, Zorn' ...

  5. POJ 1270 Following Orders(拓扑排序)

    题意: 给两行字符串,第一行为一组变量,第二行时一组约束(每个约束包含两个变量,x y 表示 x <y).输出满足约束的所有字符串序列. 思路:拓扑排序 + 深度优先搜索(DFS算法) 课本代码 ...

  6. Day4 - H - Following Orders POJ - 1270

    Order is an important concept in mathematics and in computer science. For example, Zorn's Lemma stat ...

  7. poj 1270(toposort)

    http://poj.org/problem?id=1270 题意:给一个字符串,然后再给你一些规则,要你把所有的情况都按照字典序进行输出. 思路:很明显这肯定要用到拓扑排序,当然看到discuss里 ...

  8. poj 1270(dfs+拓扑排序)

    题目链接:http://poj.org/problem?id=1270 思路:就是一简单的dfs+拓扑排序,然后就是按字典序输出所有的情况. http://paste.ubuntu.com/59872 ...

  9. POJ 1731:Orders

    Orders Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9940   Accepted: 6048 Descriptio ...

随机推荐

  1. Ionic实战三:Ionic 图片预览可放大缩小左右滑动demo-iClub图片预览

    这个demo的主要功能有两个,一个是首页的导航向上拉动会浮动在最上面的效果,另一个就是我们平时非常实用的功能,就是图片预览功能 点击可以放大图片,并且可以左右滑动,还可以双击放大缩小图片以及双手指控制 ...

  2. Spring Boot 结合 Redis 缓存

    Redis官网: 中:http://www.redis.cn/ 外:https://redis.io/ redis下载和安装 Redis官方并没有提供Redis的Windows版本,这里使用微软提供的 ...

  3. 在ASP.NET Core 2.x中获取客户端IP地址

    一.前言 大家也知道服务端请求时我们获取的IP地址是包含在请求头中,因此这也大大便利了IP的获取. 在ASP.NET中,可以通过以下方式获取客户端的IP地址. HttpContext.Current. ...

  4. vdp配置

    转:http://jiangjianlong.blog.51cto.com/3735273/1902879 本文将介绍VDP 6.1.2的部署与配置,主要内容包括部署VDP的OVA模板.初始化配置VD ...

  5. C# CuttingEdge.Conditions 验证帮助类库 文档翻译

    项目主页: https://archive.codeplex.com/?p=conditions 作者博客关于项目的文档(翻译原文): https://www.cuttingedge.it/blogs ...

  6. 【CF398B】B. Painting The Wall(期望)

    B. Painting The Wall time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. bzoj1402 Ticket to Ride 斯坦纳树 + 状压dp

    给定\(n\)个点,\(m\)条边的带权无向图 选出一些边,使得\(4\)对点之间可达,询问权值最小为多少 \(n \leqslant 30, m \leqslant 1000\) 首先看数据范围,\ ...

  8. BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学

    https://www.lydsy.com/JudgeOnline/problem.php?id=5059 题意:将原序列{ai}改为一个递增序列{ai1}并且使得abs(ai-ai1)的和最小. 如 ...

  9. 20162325 金立清 S2 W11 C20

    20162325 2017-2018-2 <程序设计与数据结构>第11周学习总结 教材关键概念摘要 在哈希方法中,元素保存在哈希表中,其在表中的位置由哈希函数确定. 两个元素或关键字映射到 ...

  10. spring boot2集成ES详解

    一:运行环境 JDK:1.8 ES:5.6.4 二:学习内容 如何构建spring-data-elasticsearch环境? 如何实现常用的增删改查? 如何实现对象嵌套也就是1对多这种关系? 三:J ...