传送门

这题又是我什么时候做的(挠头)

首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案

然后怎么求SG,根据定义,一个局面SG是后继局面SG的\(mex\),我们枚举某堆石子(有x个)分成多少堆i,然后能知道有若干堆石子有\(\lfloor\frac{x}{i}\rfloor\)个,还有的有\(\lceil\frac{x}{i}\rceil\)个.然后这两种石子的堆数也可以算出来,又因为异或某个数偶数次=0,所以只要分奇偶性看是否异或就好了.

上述过程可以加记忆化优化.但是暴力枚举还是不行的,注意到\(\lfloor\frac{x}{i}\rfloor\)最多只有\(2\sqrt n\)种取值,所以可以参考数论分块的做法,对于\(\lfloor\frac{x}{i}\rfloor\)相同的一些\(i\),只要计算最小的\(i\)以及\(i+1\),因为更大的\(i\)的贡献和\(i\)与\(i+1\)中某一个是相同的

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register using namespace std;
const int N=1e5+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int sg[N],mm[N];
int t,f,n;
il int sov(int o)
{
if(o<f) return 0;
if(~sg[o]) return sg[o];
sg[o]=0;
for(int i=2;i<=o;i=o/(o/i)+1)
{
int xx=0;
if((o%i)&1) xx^=sov(o/i+1);
if((i-o%i)&1) xx^=sov(o/i);
mm[xx]=o;
if(i==o) continue;
xx=0,++i;
if((o%i)&1) xx^=sov(o/i+1);
if((i-o%i)&1) xx^=sov(o/i);
mm[xx]=o,--i;
}
while(mm[sg[o]]==o) ++sg[o];
return sg[o];
} int main()
{
t=rd(),f=rd();
memset(sg,-1,sizeof(sg));
while(t--)
{
int n=rd(),an=0;
while(n--) an^=sov(rd());
printf("%d ",an>0);
}
return 0;
}

luogu P3235 [HNOI2014]江南乐的更多相关文章

  1. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  2. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  3. P3235 [HNOI2014]江南乐

    $ \color{#0066ff}{ 题目描述 }$ 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的 ...

  4. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  5. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  6. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  7. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  8. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  9. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

随机推荐

  1. sql server 2000 个人版怎么在win7下安装

    win7 64位安装SQL2000个人版教程 首先,如果以前安装的话,要删除干净.我也找了半天的网络资料. 1.把原来sqlserver的安装目录 C:\Program Files\microsoft ...

  2. 分布式监控系统Zabbix--使用Grafana进行图形展示

      今天介绍一款高颜值监控绘图工具Grafana,在使用Zabbix监控环境中,通常我们会结合Grafana进行图形展示.Grafana默认没有zabbix作为数据源,需要手动给zabbix安装一个插 ...

  3. 如何在疲劳的JS世界中持续学习

    作者简介 cnfi 蚂蚁金服·数据体验技术团队 本文翻译自<Stay updated in JS fatigue universe>,并对内容有所补充和修改. 部分内容参考<HOW ...

  4. c# WebApi之解决跨域问题:Cors

    什么是跨域问题 出于安全考虑,浏览器会限制脚本中发起的跨站请求,浏览器要求JavaScript或Cookie只能访问同域下的内容.由于这个原因,我们不同站点之间的数据访问会被拒绝. Cors解决跨域问 ...

  5. tcpdump高级过滤

    一:查看帮助选项 tcpdump --help Usage: tcpdump [-aAbdDefhHIJKlLnNOpqStuUvxX#] [ -B size ] [ -c count ] [ -C ...

  6. 使用text-align:justify,让内容两端对齐,兼容IE及主流浏览器的方法

    如果不喜欢看分析过程,可以跳到最后看最终兼容方案 史前方法: 以前实现两端对齐是这样的: <p class="box1">密  码</p> <p cl ...

  7. matlab : Nelder mead simplex 单纯形直接搜索算法;

    function [ param ] = NeldSearch( param ) %NERDSEARCH 此处显示有关此函数的摘要 % nelder mead simplex 单纯形直接搜索算法: % ...

  8. python对象继承

    继承允许我们在两个或者更多的类之间创建一种“是一个”的关系,这种关系把共同的细节抽象到一个超类里. 从技术上讲,每一个我们创建的类都使用了继承,所有的python类都是一个叫做object的特殊类的子 ...

  9. hive metastore && hiveserver2 . jvm 配置调整优化

    hive-env.sh 添加如下,其中踩坑踩了不少. if [ "$SERVICE" = "metastore" ]; then if [ -z "$ ...

  10. java io系列20之 PipedReader和PipedWriter

    本章,我们学习PipedReader和PipedWriter.它们和“PipedInputStream和PipedOutputStream”一样,都可以用于管道通信. PipedWriter 是字符管 ...