Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri. 

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

太令人窒息了!!!!!查错两小时!!!!!
很容易看得出来这是个线段树,每次贴一张就相当于一次区间修改,完了之后刷一遍看有多少种.....
but....
仅仅这样是不够的,数据范围疯狂暗示我们它想要离散化
然后就完了
一定要注意不要写错板子啊啊啊啊啊啊啊
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define N 200010
#define lc p<<1
#define rc p<<1|1
using namespace std;
int n,t,m,tot;
int ll[N],rr[N],a[N],col[N],ans;
bool vis[N];
struct tree
{
int l,r;
int lazy,c;
}T[N*];
inline void pushnow(int p,int c)
{
T[p].lazy=c;
T[p].c=c;
}
inline void pushup(int p)//√
{
if(!T[lc].c||!T[rc].c||T[lc].c!=T[rc].c) T[p].c=;
else T[p].c=T[rc].c;
}
inline void pushdown(int p)
{
if(T[p].lazy!=-)
{
pushnow(lc,T[p].lazy);
pushnow(rc,T[p].lazy);
T[p].lazy=-;
}
}
void build(int p,int l,int r)//√
{
T[p].l=l; T[p].r=r;
if(l==r)
{
T[p].c=-;
T[p].lazy=-;
return;
}
int mid=(T[p].l+T[p].r)>>;
build(lc,l,mid); build(rc,mid+,r);
pushup(p);
}
void update(int p,int ql,int qr,int v)
{
if(ql<=T[p].l&&T[p].r<=qr)//!!!!!!!!!!!!!!!!!!
{
pushnow(p,v);
return;
}
pushdown(p);
int mid=(T[p].l+T[p].r)>>;
if(ql<=mid) update(lc,ql,qr,v);
if(qr>mid) update(rc,ql,qr,v);
pushup(p);
} void query(int p,int ql,int qr)
{
if(T[p].c==-) return;
else if(T[p].c>)
{
col[T[p].c]=;
return;
}
int mid=(T[p].l+T[p].r)>>;
pushdown(p);
if(ql<=mid) query(lc,ql,qr);
if(qr>mid) query(rc,ql,qr);
}
int main()
{
scanf("%d",&t);
while(t--)
{
int ans=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int pl,pr;
scanf("%d%d",&pl,&pr);
ll[i]=pl; rr[i]=pr;
a[i*-]=pl;a[i*]=pr;
}
sort(a+,a++*n);
m=unique(a+,a++*n)-(a+);
tot=m;
for(int i=;i<m;i++)
if(a[i]+<a[i+])
a[++tot]=a[i]+;
sort(a+,a++tot);
build(,,tot);
memset(col,,sizeof(col));
for(int i=;i<=n;i++)
{
int x=lower_bound(a+,a++tot,ll[i])-a;
int y=lower_bound(a+,a++tot,rr[i])-a;
//cout<<x<<" "<<y<<endl;
update(,x,y,i);
}
query(,,tot);
for(int i=;i<=n;i++)
if(col[i]) ans++;
printf("%d\n",ans);
}
return ;
}

这是一篇代码

 

【SDOJ 3741】 【poj2528】 Mayor's posters的更多相关文章

  1. POJ2528 Uva10587 Mayor's posters

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign h ...

  2. 线段树---poj2528 Mayor’s posters【成段替换|离散化】

    poj2528 Mayor's posters 题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报 思路:这题数据范围很大,直接搞超时+超内存,需要离散化: 离散化简单的来说就是只取我们需要 ...

  3. POJ2528 Mayor&#39;s posters 【线段树】+【成段更新】+【离散化】

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39795   Accepted: 11552 ...

  4. 【poj2528】Mayor's posters

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 64939   Accepted: 18770 ...

  5. 【线段树】Mayor's posters

    [poj2528]Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 66154   Accept ...

  6. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  7. POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  8. POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】

    任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  9. 【英语魔法俱乐部——读书笔记】 3 高级句型-简化从句&倒装句(Reduced Clauses、Inverted Sentences) 【完结】

    [英语魔法俱乐部——读书笔记] 3 高级句型-简化从句&倒装句(Reduced Clauses.Inverted Sentences):(3.1)从属从句简化的通则.(3.2)形容词从句简化. ...

随机推荐

  1. uvm_reg_fifo——寄存器模型(十五)

    当我们对寄存器register, 存储器memory, 都进行了建模,是时候对FIFO进行建模了 uvm_reg_fifo毫无旁贷底承担起了这个责任,包括:set, get, update, read ...

  2. uvm_mem——寄存器模型(十二)

    看完了寄存器,再来看看存储器: //------------------------------------------------------------------------------ // ...

  3. 两个div并列居中显示——当display:inline;时,div的宽高不起作用即两个div重叠显示

    解决办法: 将display设置为:inline-block

  4. BestCoder Round #56 1002 Clarke and problem 1003 Clarke and puzzle (dp,二维bit或线段树)

    今天第二次做BC,不习惯hdu的oj,CE过2次... 1002 Clarke and problem 和Codeforces Round #319 (Div. 2) B Modulo Sum思路差不 ...

  5. 团队作业-Beta冲刺(周三)

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1 这个作业要求在哪里 https://edu.cnblo ...

  6. HTML之元素分类

    一.元素展示类型 在HTML本身定义了很多元素,这些元素在网页上展示的时候都会有自己的默认状态,例如有些元素在默认状态下对高宽的属性设置不起作用,有些元素都默认情况下都独立一行显示,这种现象我们称之为 ...

  7. 使用Timer组件实现倒计时

    实现效果: 知识运用:  Timer组件的Enabed属性 实现代码: private void timer1_Tick(object sender, EventArgs e) { DateTime ...

  8. <!DOCTYPE>声明

    定义和用法 <!DOCTYPE> 声明必须是 HTML 文档的第一行,位于 <html> 标签之前. <!DOCTYPE> 声明不是 HTML 标签:它是指示 we ...

  9. Windows上PostgreSQL安装配置教程

    Windows上PostgreSQL安装配置教程 这篇文章主要为大家详细介绍了Windows上PostgreSQL安装配置教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 PostgreSQL的 ...

  10. ssh整合思想 Spring与Hibernate和Struts2的action整合 调用action添加数据库 使用HibernateTemplate的save(entity)方法 update delete get 等方法crud操作

    UserAction类代码: package com.swift.action; import com.opensymphony.xwork2.ActionSupport; import com.sw ...