[物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度
1. 电流密度, 电荷守恒定律
(1) 电荷的定向移动形成电流.
(2) 电流密度 ${\bf j}$, 是描述导体内一点在某一时刻电流流动情况的物理量, 用单位时间内通过垂直于电流方向的单位面积的电荷量来衡量.
(3) 电荷守恒定律: 设 $\vGa$ 为一封闭曲面, 则单位时间内 $\vGa$ 内电荷的增加量 $=$ 这段时间内经 $\vGa$ 流入的电荷总和, 用公式表示为 $$\bex \cfrac{\rd}{\rd t}\int_\Omega \rho\rd V =-\int_\vGa {\bf j}\cdot{\bf n}\rd S. \eex$$ 而可化为微分形式 $$\bex \rho_t+\Div {\bf j}=0. \eex$$ 称为电流的连续性方程.
2. Amp\'ere-Biot-Savart 定律, 磁感强度
(1) 磁场是一种空间, 于其中运动的电荷 (电流) 受到力的作用.
(2) 磁场是物质存在的一种形式, 它可以离开电流而独立存在, 比如变化的电场产生磁场.
(3) 在稳定的电流分布 ${\bf j}(x,y,z)$ 中, $P$ 处的电流元 ${\bf j}(P)\rd V_P$ 受到 $P'$ 处的电流元 ${\bf j}(P')\rd V_{P'}$ 的作用力为 $$\bex \cfrac{\mu_0}{4\pi} {\bf j}(P)\rd V_P\times \sex{\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}}, \eex$$ 其中 $\mu_0=4\pi\times 10^{-7}V\cdot s/(A\cdot m)$ 为真空中的磁导率.
(4) 设电流分布的空间为 $\Omega$, 则 ${\bf j}(P)\rd V_P$ 所受的力为 $$\bex \rd {\bf F}(P)={\bf j}(P)\rd V_P\times \int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}. \eex$$ 令 $$\bex {\bf B}(P)=\int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3} \eex$$ 为 $P$ 处的磁感强度, 则 $$\bex \rd {\bf F}(P)={\bf j}(P)\rd V_P\times {\bf B}(P). \eex$$ 这就是 Amp\'ere-Biot-Savart 定律.
3. Amp\'ere 定理的积分形式: 对静磁场中的任一闭曲线 $l$, $$\bex \oint_l{\bf B}\cdot \rd{\bf l} =\mu_0\int_S {\bf j}\cdot {\bf n}\rd S, \eex$$ 其中 $S$ 为任一以 $l$ 为边界的有向曲面, 其方向与 $l$ 成右手定则.
证明:
(1) 先对 ${\bf B}$ 化简: $$\beex \bea {\bf B}(P)&=\cfrac{\mu_0}{4\pi} \int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}\\ &=\cfrac{\mu_0}{4\pi}\int_\Omega \n\cfrac{1}{r_{P'P}} \times {\bf j}(P')\rd V_{P'}\\ &=\cfrac{\mu_0}{4\pi}\int_\Omega \sez{ \rot\sex{\cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}} -\cfrac{1}{r_{P'P}}\rot {\bf j}(P') \rd V_{P'}}\\ &\quad\sex{\rot(\phi{\bf A})=\n\phi\times {\bf A}+\phi\rot {\bf A}}\\ &=\rot {\bf A}(P)\quad\sex{{\bf A}(P)=\cfrac{\mu_0}{4\pi} \int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}}, \eea \eeex$$ 其中最后一步我们利用了稳定磁场是 (有源) 无旋场.
(2) 如此, $$\bex \Div {\bf B}(P)\ra \int_S {\bf B}\cdot\n \rd S=0\quad\sex{\forall\ \mbox{封闭曲面 }S}. \eex$$ 静磁场是无源场.
(3) $$\beex \bea \int_l{\bf B}\cdot\rd {\bf l} &=\int_S \rot{\bf B}\cdot{\bf n}\rd S\\ &=\int_S\rot\rot {\bf A}\cdot{\bf n}\rd S\\ &=\int_S (-\lap {\bf A}+\n\Div{\bf A})\rd S\\ &\equiv I_1+I_2. \eea \eeex$$
(4) 对 $I_1$, 注意到 $-\cfrac{1}{4\pi}\int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}$ 为 $-\lap{\bf u}={\bf j}$ 的解, 而 $$\bex I_1=\int_S \mu_0{\bf j}\cdot{\bf n}\rd S. \eex$$
(5) 对 $I_2$, 注意到 $$\beex \bea \Div {\bf A}(P)&=\cfrac{\mu_0}{4\pi}\int_\Omega \Div \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}\\ &=\cfrac{\mu_0}{4\pi} \int_\Omega \n\cfrac{1}{r_{P'P}}\cdot{\bf j}(P')\rd V_{P'}\\ &\quad\sex{\Div(f{\bf X})=\n f \cdot {\bf X}+f\Div {\bf X},\ \Div{\bf j}=0\la (2. 21)}\\ &=-\cfrac{\mu_0}{4\pi}\int_\Omega \n'\cfrac{1}{r_{P'P}}\cdot {\bf j}(P')\rd V_{P'}\\ &=-\cfrac{\mu_0}{4\pi}\sez{ \int_{\p \Omega}\cfrac{1}{r_{P'P}}{\bf j}(P')\cdot{\bf n}\rd S -\int_\Omega \cfrac{1}{r_{P'P}}\Div'{\bf j}(P')\rd V_{P'} }\\ &=0, \eea \eeex$$ 我们有 $I_2=0$.
(6) 于是 $$\bex \oint_l{\bf B}\cdot{\bf n}\rd {\bf l} =\mu_0\int_S{\bf j}\cdot{\bf n}\rd S. \eex$$
4. Amp\'ere 定理的微分形式: $$\bex \rot{\bf B}=\mu_0{\bf j}. \eex$$ 由此, 静磁场是有旋场.
5. 总结: 稳定电流的磁场 (静磁场) 是无源有旋场.
[物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度的更多相关文章
- [物理学与PDEs]第1章第2节 预备知识 2.3 Faraday 电磁感应定律
1. Faraday 电磁感应定律: 设 $l$ 为任一闭曲线, 则 $$\bex \oint_l{\bf E}\cdot\rd {\bf l} =-\int_S \cfrac{\p {\bf B} ...
- [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度
1. Coulomb 定律, 电场强度 (1) 真空中 $P_1$ 处有电荷 $q_1$, $P$ 处有电荷 $q$, ${\bf r}_1=\vec{P_1P}$, 则 $q$ 所受的力为 $$\b ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
随机推荐
- java类加载及类初始化
1.前言 java是跨平台语言,主要是因为它的java虚拟机的存在,java有事编译语言,所以需要将编写的java文件编译成jvm可运用的class字节码文件.在java中一切皆对象.对于Java虚拟 ...
- Linux Collection:源和更新
PAS 配置sources.list软件源 参考例子(Debian 9,文件/etc/apt/sources.list): deb https://mirrors.ustc.edu.cn/debian ...
- flex布局justify-content属性和align-items属性设置
前言: flex最常用的就是justify-content和align-items了,这里把这两个属性介绍下,大家更多关于flex布局可以查看阮一峰的日志,写的非常清楚! 阮一峰flex布局的日志:h ...
- HTML DOM 事件对象 ondragend 事件
学习网站:http://www.runoob.com/jsref/event-ondragend.html 定义和用法 ondragend 事件在用户完成元素或首选文本的拖动时触发. 拖放是 HTML ...
- SpringBoot学习笔记(2) Spring Boot的一些配置
外部配置 Spring Boot允许使用properties文件.yaml文件或者命令行参数作为外部配置 使用@Value注解,可以直接将属性值注入到你的beans中,并通过Spring的Enviro ...
- (七)Create an Index
Now let’s create an index named "customer" and then list all the indexes again: 现在让我们创建一个名 ...
- Python编码、集合set、深浅拷贝
编码 : a.encode(' ') windows 默认编码GBK ASCII : 最早的编码. ⾥⾯有英⽂⼤写字⺟, ⼩写字⺟, 数字, ⼀些特殊字符.没有中⽂, 8个01代码, 8个bi ...
- 嵌入式操作系统---打印函数(printf/sprintf)的实现
一.打印函数简介 作用:将“给定的内容”按照“指定的格式”输出到“指定目标内”. 打印函数的基本格式: char print_buf[BUF_SIZE]; void printf(const char ...
- MyBatis 学习总结 01 快速入门
本文测试源码下载地址: http://onl5wa4sd.bkt.clouddn.com/MyBatis0918.rar 一.Mybatis介绍 MyBatis是一个支持普通SQL查询,存储过程和高级 ...
- vue的一些基本知识
配置webpack及vue脚手架工具: vue-cli 2 npm install webpack webpack-cli -g npm install vue-cli -g 搭建脚手架 vue ...