Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\).

Comment: To prove the identity of two topologies, we can either show they mutually contain each other or prove the equivalence of their bases. Because a topological basis has smaller number of elements or cardinality than the corresponding topology, proof via basis is more efficient.

Proof: Let \(\mathcal{C}\) be the topological basis of \(X\) and \(\mathcal{D}\) be the basis of \(Y\). Because \(A \subset X\) and \(B \subset Y\), the subspace topological bases of them are \(\mathcal{B}_A = \{C \cap A \vert \forall C \in \mathcal{C} \}\) and \(\mathcal{B}_B = \{D \cap B \vert \forall D \in \mathcal{D} \}\) respectively according to Lemma 16.1.

Due to Lemma 15.1, the basis of the product topology on \(A \times B\) is

\[
\mathcal{B}_{A \times B} = \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Meanwhile, the basis of the product topology on \(X \times Y\) is

\[
\mathcal{B}_{X \times Y} = \{ C \times D \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Restricting \(\mathcal{B}_{X \times Y}\) to the subset \(A \times B\), the basis of the subspace topology on \(A \times B\) is

\[
\begin{aligned}
\tilde{\mathcal{B}}_{A \times B} &= \{ (C \times D) \cap (A \times B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \} \\
&= \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \},
\end{aligned}
\]

which is the same as that of the product topology on \(A \times B\). Hence, this theorem is proved.

The above process of proof can be illustrated as below.

Remark: The above two routes for generating topology on \(A \times B\) must lead to the same result, otherwise, the theory itself is inappropriately proposed. A theory must be at least self-consistent before its debut in reality.

James Munkres Topology: Theorem 16.3的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  6. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  7. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. jsp篇 之 jsp中的注释

    Jsp中的注释: 第一种: <!-- html/xml中的注释方式 --> 特点: 1.用户在浏览器中右键查看源代码 [能] 看到这个注释. 2.在服务器端,这个jsp页面被翻译成的jav ...

  2. kubernetes-kubeadm自动生成的证书过期的解决方法

    拉取kubernetes的源码: git clone https://github.com/kubernetes/kubernetes.git 切换版本: cd kubernetes &&am ...

  3. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  4. flex布局应用

    flex介绍  http://www.ruanyifeng.com/blog/2015/07/flex-grammar.html 了解了flex布局之后,发现其功能非常强大. 当指定一个div dis ...

  5. CodeForces 70

    题目 A题 #include<bits/stdc++.h> using namespace std; int n,b,sum; int main(){ scanf("%d&quo ...

  6. (二叉树 递归) leetcode 144. Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. Example: Input: [1,null,2,3 ...

  7. 2018-2019-2 20175209 实验一《Java开发环境的熟悉》实验报告

    2018-2019-2 20175209 实验一<Java开发环境的熟悉>实验报告 一.实验内容及步骤 1.使用JDK编译.运行简单的Java程序 cd 20175209进入2017520 ...

  8. saltstack主机管理项目:今日总结(六)

    一.总目录 二.具体代码 salt #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:luoahong import os,sys if __ ...

  9. HTML/CSS: 如何制作未读信息图标

    最近公司项目中涉及到制作通讯界面中未读信息的带数字的红色圆点图标. 拿我目前的博客头像图片为例(其实就是谷歌图片中粗略挑了一张顺眼的图片),效果图如下: HTML代码如下: <img id=&q ...

  10. HDU 6108(整除判断 数学)

    题意是求在给定的 P 进制下,满足条件的数字 B 有多少.条件:若任何一个数的各位数字之和能被 B 整除,则该数可被 B 整除. 在 p 进制下,每个正整数都可以都可以表示为:a0*p^0 + a1* ...