图像增强的目的:改善图像的视觉效果或使图像更适合于人或机器的分析处理。通过图像增强,可以减少图像噪声,提高目标与背景的对比度,也可以增强或抑制图像中的某些细节。

 ---------------------------------------------------------------------------------------------------

灰度变换:把原图像的像素灰度经过某个函数变换成新图像的灰度。可分为直线灰度变换法和直方图修正法。

直线灰度变换法:线性、分段线性、非线性变换。

直方图修正法:直方图均衡化、直方图规定化。

 ---------------------------------------------------------------------------------------------------

图像直方图:是对像素的某种属性(如灰度、颜色、梯度等)分布进行统计分析的重要手段。

灰度直方图:是灰度级的函数,它反映了图像中每一灰度级出现的次数或频率。

直方图均衡化:把原始图像的直方图变换为均匀分布的形式,从而增加图像灰度的动态范围,以达到增强图像对比度的效果。

经过均衡化处理的图像,其灰度级出现的概率相同,此时图像的熵最大,图像所包含的信息量最大。

【注意,离散后是每块区域的概率相等,均衡化后并不是条直线哦。】

  细节概念等省略......

---------------------------------------------------------------------------------------------------

 线性灰度增强、对数变换、指数变换、直方图均衡化。代码见下(代码略粗糙...)【ImageEnhance.cpp部分代码】

 //线性灰度增强
bool CImageEnhance::GrayLinearTransform(Mat &src, Mat &dst, uchar c, uchar d)
{
int b=,a=;
dst = src.clone();
int row = dst.rows, col = dst.cols * dst.channels();
uchar *cc = dst.data;
for(int i = ; i < row; ++i) {
for(int j = ; j < col; ++j) {
int val = *cc;
if(a > val) a = val;
if(b < val) b = val;
cc++;
}
}
cc = dst.data;
float k = float(d - c)/(b-a);
//CString c1; c1.Format(_T("a=%d,b=%d,c=%d,d=%d,k=%.2f\n"), a,b,c,d,k);MessageBox(c1);
for(int i = ; i < row; ++i) {
for(int j = ; j < col; ++j) {
int val = *cc;
int s = (int)(k*(val - a) + c);
*cc = s;
cc++;
}
}
return true;
}
//对数变换
bool CImageEnhance::GraynoLinearlog(Mat &src, Mat &dst) {
dst = src.clone();
int row = dst.rows, col = dst.cols * dst.channels();
uchar *cc = dst.data;
double k = / log10(256.0);
for(int i = ; i < row; ++i) {
for(int j = ; j < col; ++j) {
int val = *cc;
*cc = k * log10(1.0*(val + ));
cc++;
}
}
return true;
}
//指数变换
bool CImageEnhance::GraynoLinearindex(Mat &src, Mat &dst) {
dst = src.clone();
int row = dst.rows, col = dst.cols * dst.channels();
uchar *cc = dst.data;
double k = 1.0 / ;
for(int i = ; i < row; ++i) {
for(int j = ; j < col; ++j) {
int val = *cc;
*cc = k * val * val;
cc++;
}
}
return true;
} MatND CImageEnhance::getHist1(Mat& image)
{
MatND hist;
int channels[] = {};
int dims = ;
int histSize[] = {}; //直方图箱子的个数
float granges[] = {, };
const float *ranges[] = {granges}; //像素值范围
//计算直方图
calcHist(&image, , channels, Mat()/*不使用掩码*/, hist, dims/*这是一维的直方图*/, histSize, ranges);
return hist; //这里得到的hiat是256行一列的Mat
} //直方图均衡化
bool CImageEnhance::Equalize_hist(cv::Mat& src,cv::Mat& dst)
{
//CMFC_Test_lyyDlg pic;
MatND hist;
int channels[] = {};
int dims = ;
int histSize[] = {}; //直方图箱子的个数
float granges[] = {, };
const float *ranges[] = {granges}; //像素值范围
//计算直方图
Mat image = src.clone();
calcHist(&image, , channels, Mat()/*不使用掩码*/, hist, dims/*这是一维的直方图*/, histSize, ranges); //MatND hist = getHist1(src);//pic.getHist(dst);
float s[];
float p[]; cv::Mat lookup(cv::Size(, ), CV_8U);
int pixNum = src.cols * src.rows;//总像素个数
for (int i =; i <; i++) {
s[i] = hist.at<float>(i) / pixNum;
if (i ==) {
p[i] = s[i];
}
else {
p[i] = p[i -] + s[i];
}
}
for (int i =; i <; i++) {
lookup.at <uchar>(i) = static_cast<uchar>(p[i]*255.0);
} cv::LUT(src, lookup, dst);//创建矩阵,把一个像素值映射到另一个像素值
return true;
}

ImageEnhance.cpp

效果如下:

原图像:

线性灰度增强:我这里默认a和b表示原图像灰度值的最小与最大值。以下示例取c=255,d=0,效果为使图像负像,即黑变白,白变黑。

  

对数变换:(使图像的低灰度范围得以扩展而高灰度范围得以压缩,变换后的图像更符合人的视觉效果,因为人眼对高亮度的分辨率要求高于对低亮度的分辨率)

  

指数变换:(指数大于1。与对数变换相反。)

 直方图均衡化:

求原图像的灰度直方图代码:

 //获得直方图
MatND getHistt(Mat& image){
MatND hist;
int channels[] = {};
int dims = ;
int histSize[] = {}; //直方图箱子的个数
float granges[] = {, };
const float *ranges[] = {granges}; //像素值范围
//计算直方图
calcHist(&image, , channels, Mat()/*不使用掩码*/, hist, dims/*这是一维的直方图*/, histSize, ranges);
return hist; //这里得到的hiat是256行一列的Mat
}
// 将图像的直方图展示出来
Mat draw_Hist(Mat &inputImage)
{
cv::MatND hist = getHistt(inputImage);
Mat showImage(, , CV_8U,Scalar());
int i;
double maxValue = ;
minMaxLoc(hist, , &maxValue, , );
for(i = ; i < ; i++)
{
float value = hist.at<float>(i);
int intensity = saturate_cast<int>( - * (value/maxValue));
rectangle(showImage, Point(i, - ), Point((i+)-, intensity), Scalar());
}
//namedWindow("gray"); imshow("gray", showImage);
//cvMoveWindow("gray", 300, 300);
//waitKey(0);
return showImage;
}

 直方图显示:以下展示的 为以上的原图像以及直方图均衡化后的图像的  灰度直方图。

  

【OpenCV】图像增强---灰度变换、直方图均衡化的更多相关文章

  1. opencv:图像直方图均衡化

    // 直方图均衡化 Mat gray, dst; cvtColor(src, gray, COLOR_BGR2GRAY); equalizeHist(gray, dst); imshow(" ...

  2. opencv C++全局直方图均衡化

    cv::Mat histogramEqualization(cv::Mat img){ int rows=img.rows; int cols=img.cols; cv::Mat grayScale= ...

  3. opencv图像直方图均衡化及其原理

    直方图均衡化是什么有什么用 先说什么是直方图均衡化,通俗的说,以灰度图为例,原图的某一个像素为x,经过某个函数变为y.形成新的图.新的图的灰度值的分布是均匀的,这个过程就叫直方图均衡化. 图像直方图均 ...

  4. OpenCV计算机视觉学习(9)——图像直方图 & 直方图均衡化

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 1, ...

  5. OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)

    http://blog.csdn.net/dcrmg/article/details/53677739 1. 基于直方图均衡化的图像增强   直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶 ...

  6. OpenCV——直方图均衡化(用于图像增强)

    #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespac ...

  7. 灰度图像--图像增强 直方图均衡化(Histogram equalization)

    灰度图像--图像增强 直方图均衡化(Histogram equalization) 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些 ...

  8. 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)

    一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则 ...

  9. 直方图均衡化的 C++ 实现(基于 openCV)

    这是数字图像处理课的大作业,完成于 2013/06/17,需要调用 openCV 库,完整源码和报告如下: #include <cv.h> #include <highgui.h&g ...

随机推荐

  1. SQL 之连接查询

    概述:INNER JOIN.LEFT JOIN.LIGHT JOIN.FULL JOIN. 一.INNER JOIN INNER JOIN 关键字在表中存在至少一个匹配时返回行. 语法: select ...

  2. [javaSE] 网络编程(URLConnection)

    获取URL对象,new出来,构造参数:String的路径 调用URL对象的openConnection()方法,获取URLConnection对象 调用URLConnection对象的getInput ...

  3. java中接口的定义

    使用interface来定义一个接口.接口定义同类的定义类似,也是分为接口的声明和接口体,其中接口体由常量定义和方法定义两部分组成.定义接口的基本格式如下: [修饰符] interface 接口名 [ ...

  4. ZOJ 1049 判断坐标点

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=49 水题 #include<iostream> #include&l ...

  5. js-99乘法表的练习

    <html> <head> <title>World</title> <style type="text/css"> & ...

  6. drupal7 STMP邮件模块配置

    drupal7.54 STMP  version = "7.x-1.6" 配置:   注意:上面的“用户名”需要和“站点信息”页面的电子邮件地址保持一致,邮件发送才能成功 ---- ...

  7. 数组实例 find和filter差异

    const list01 = [{'name':'No1',age:20},{'name':'No2',age:21},{'name':'No3',age:20}]; let list02 = lis ...

  8. 微服务&spring cloud架构系列汇总

    为了方便查找,把微服务&微服务架构之spring cloud架构系列文章按时间正序整理了一下,记录如下:   1. 微服务架构之spring cloud 介绍 2. 微服务架构之spring ...

  9. thinkPHP -01- thinkPHP5.0 安装与测试

    thinkPHP -01- thinkPHP5.0 安装与测试 1.thinkPHP 5 官网下载地址:http://www.thinkphp.cn/down.html 2.打开 Wampserver ...

  10. bat 常见问题及小实例

    bat 常用命令小实例 常见问题: 1.如果你自己编写的.bat文件,双击打开,出现闪退 原因:执行速度很快,执行完之后,自行关闭 解决办法:在最后面一行加上 pause 例如: @echo off ...