一、介绍

1. Fluentd 是一个开源收集事件和日志系统,用与各node节点日志数据的收集、处理等等。详细介绍移步-->官方地址:http://fluentd.org/

2. Elasticsearch 是一个开源的,基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。详细介绍移步-->官方地址:http://www.elasticsearch.org/overview/

3. Kibana 开源的用于数据可视化的web ui工具,可使用它对日志进行高效的搜索、可视化、分析等各种操作。详细介绍移步-->官方地址http://www.elasticsearch.org/overview/kibana/

二、流程

每个node节点上面的fluentd监控并收集该节点上面的系统日志,并将处理过后的日志信息发送给Elasticsearch,Elasticsearch汇总各个node节点的日志信息,最后结合Kibana 实现web ui界面的数据展示。

三、安装实现

1.确保k8s集群正常工作(当然这是必须的....)

2.fluentd.yaml文件编写,这里要实现每个节点都能有fluentd跑起来,只需要将kind设置为DaemonSet即可。

 apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
name: fluentd-elasticsearch
namespace: kube-system
labels:
k8s-app: fluentd-logging
spec:
template:
metadata:
labels:
name: fluentd-elasticsearch
spec:
containers:
- name: fluentd-elasticsearch
image: gcr.io/google-containers/fluentd-elasticsearch:.
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
terminationGracePeriodSeconds:
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers

3.elasticsearch-rc.yaml&elasticsearch-svc.yaml

apiVersion: v1
kind: ReplicationController
metadata:
name: elasticsearch-logging-v1
namespace: kube-system
labels:
k8s-app: elasticsearch-logging
version: v1
kubernetes.io/cluster-service: "true"
spec:
replicas:
selector:
k8s-app: elasticsearch-logging
version: v1
template:
metadata:
labels:
k8s-app: elasticsearch-logging
version: v1
kubernetes.io/cluster-service: "true"
spec:
containers:
- image: gcr.io/google-containers/elasticsearch:v2..
name: elasticsearch-logging
resources:
# need more cpu upon initialization, therefore burstable class
limits:
cpu: 1000m
requests:
cpu: 100m
ports:
- containerPort:
name: db
protocol: TCP
- containerPort:
name: transport
protocol: TCP
volumeMounts:
- name: es-persistent-storage
mountPath: /data
volumes:
- name: es-persistent-storage
emptyDir: {}
apiVersion: v1
kind: Service
metadata:
name: elasticsearch-logging
namespace: kube-system
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
kubernetes.io/name: "Elasticsearch"
spec:
ports:
- port:
protocol: TCP
targetPort: db
selector:
k8s-app: elasticsearch-logging

4.kibana-rc.yaml&kibana-svc.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: kibana-logging
namespace: kube-system
labels:
k8s-app: kibana-logging
kubernetes.io/cluster-service: "true"
spec:
replicas:
selector:
matchLabels:
k8s-app: kibana-logging
template:
metadata:
labels:
k8s-app: kibana-logging
spec:
containers:
- name: kibana-logging
image: gcr.io/google-containers/kibana:v4..
resources:
# keep request = limit to keep this container in guaranteed class
limits:
cpu: 100m
requests:
cpu: 100m
env:
- name: "ELASTICSEARCH_URL"
value: "http://elasticsearch-logging:9200"
- name: "KIBANA_BASE_URL"
value: "/api/v1/proxy/namespaces/kube-system/services/kibana-logging"
ports:
- containerPort:
name: ui
protocol: TCP
apiVersion: v1
kind: Service
metadata:
name: kibana-logging
namespace: kube-system
labels:
k8s-app: kibana-logging
kubernetes.io/cluster-service: "true"
kubernetes.io/name: "Kibana"
spec:
ports:
- port:
protocol: TCP
targetPort: ui
selector:
k8s-app: kibana-logging

5.kubectl create -f ****** ,这里就自己发挥吧。

镜像推荐使用最新的iamge,多去github/kubernetes看看 里面有详细的说明

kubernetes部署Fluentd+Elasticsearch+kibana 日志收集系统的更多相关文章

  1. 本地搭建ELK(elasticsearch, logstash, kibana)日志收集系统

    环境准备:macos 预先安装brew包管理器 1.安装elasticsearch流程 那么,咱们先去安装java8 接着,咱们继续按照elasticsearch 接着,咱们启动elasticsear ...

  2. 使用Fluentd + MongoDB构建实时日志收集系统

    Fluentd是一个日志收集系统,它的特点在于其各部分均是可定制化的,你可以通过简单的配置,将日志收集到不同的地方. 目前开源社区已经贡献了下面一些存储插件:MongoDB, Redis, Couch ...

  3. 快速搭建应用服务日志收集系统(Filebeat + ElasticSearch + kibana)

    快速搭建应用服务日志收集系统(Filebeat + ElasticSearch + kibana) 概要说明 需求场景,系统环境是CentOS,多个应用部署在多台服务器上,平时查看应用日志及排查问题十 ...

  4. 用ElasticSearch,LogStash,Kibana搭建实时日志收集系统

    用ElasticSearch,LogStash,Kibana搭建实时日志收集系统 介绍 这套系统,logstash负责收集处理日志文件内容存储到elasticsearch搜索引擎数据库中.kibana ...

  5. 容器云平台No.9~kubernetes日志收集系统EFK

    EFK介绍 EFK,全称Elasticsearch Fluentd Kibana ,是kubernetes中比较常用的日志收集方案,也是官方比较推荐的方案. 通过EFK,可以把集群的所有日志收集到El ...

  6. Kubernetes 系列(八):搭建EFK日志收集系统

    Kubernetes 中比较流行的日志收集解决方案是 Elasticsearch.Fluentd 和 Kibana(EFK)技术栈,也是官方现在比较推荐的一种方案. Elasticsearch 是一个 ...

  7. 用fabric部署维护kle日志收集系统

    最近搞了一个logstash kafka elasticsearch kibana 整合部署的日志收集系统.部署参考lagstash + elasticsearch + kibana 3 + kafk ...

  8. 十九,基于helm搭建EFK日志收集系统

    目录 EFK日志系统 一,EFK日志系统简介: 二,EFK系统部署 1,EFK系统部署方式 2,基于Helm方式部署EFK EFK日志系统 一,EFK日志系统简介: 关于系统日志收集处理方案,其实有很 ...

  9. [转载] 一共81个,开源大数据处理工具汇总(下),包括日志收集系统/集群管理/RPC等

    原文: http://www.36dsj.com/archives/25042 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务 ...

随机推荐

  1. HTML5系列目录

    1. HTML5与HTML4的区别 2. HTML5结构 3. HTML5表单 4. HTML5文件 5. HTML5绘图 6. HTML6本地存储

  2. 【Win 10应用开发】把文件嵌入到XML文档

    把文件内容嵌入(或存入)到XML文档中,相信很多朋友会想到把字节数组转化为Base64字符串,再作为XML文档的节点.不过,有人会说了,转化后的base64字符串中含有像“+”这样的符号,写入到XML ...

  3. c#编程基础之字符串函数

    c#常用的字符串函数 例一: 获取字符串的大小写函数 ToLower():得到字符串的小写形式 ToUpper():得到字符串的大写形式 注意: 字符串时不可变的,所以这些函数都不会直接改变字符串的内 ...

  4. Ubuntu下的解压缩

    一. 命令: .tar 解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!)———————————————.gz ...

  5. C#开发微信门户及应用(1)--开始使用微信接口

    微信应用如火如荼,很多公司都希望搭上信息快车,这个是一个商机,也是一个技术的方向,因此,有空研究下.学习下微信的相关开发,也就成为日常计划的重要事情之一了.本系列文章希望从一个循序渐进的角度上,全面介 ...

  6. flask+sqlite3+echarts2+ajax数据可视化

    前提: 准备Python + Flask+Sqlite3的平台环境(windows系统) 前面一节介绍flask怎么安装了,剩下sqlite3下载后解压,然后环境变量添加解压路径就行了 附加下载地址: ...

  7. session & cookie(li)

    Session & Cookie 一.定义 Session,用户在浏览某个网站时,从进入网站到浏览器关闭所经过的这段时间,也就是用户浏览这个网站所花费的时间.Cookie,由服务器端生成,发送 ...

  8. python之最强王者(3)——变量,条件、循环语句

    1.Python 变量类型 变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间. 基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中. 因此,变量可以指定不同的 ...

  9. Json map

    1. 返回数据形式 Class returnMsg{ boolean success; String   msg; String   errorMsg; } 2.问题 当msg中的数据由对象 或 集合 ...

  10. python语言中的编码问题(续)

    上文提到了python开发中非常重要的两处设置. 一个是编解码器的默认设置defaultencoding >>> import sys >>> sys.getdef ...