题目链接

题目

题目描述

\(N (2 \leq N \leq 8,000)\) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.

Regrettably, FJ does not have a way to sort them. Furthermore, he's not very good at observing problems. Instead of writing down each cow's brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.

Given this data, tell FJ the exact ordering of the cows.

输入描述

  • Line 1: A single integer, N
  • Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow in slot #2; line 3 describes the number of preceding cows whose brands are smaller than the cow in slot #3; and so on.

输出描述

  • Lines 1..N: Each of the N lines of output tells the brand of a cow in line. Line #1 of the output tells the brand of the first cow in line; line 2 tells the brand of the second cow; and so on.

示例1

输入

5
1
2
1
0

输出

2
4
5
3
1

题解

知识点:树状数组,倍增,枚举。

首先需要一个事实,对于一个排列,要确定其中某个位置的数具体是多少,可以通过整个排列比它小的数字有多少个(或者比它大的数字有多少个)确定。现在这道题确定了各个位置的数的左边比它小的数的个数,我们只需要知道在它右边有多少个数比它小就行,因此我们从右往左枚举,依次确定数字。

首先用树状数组维护右侧出现的数字,随后需要二分一个 \(x\) 通过比较 \(x - cnt_{<x} -1 < a_i\) 得知 \(x\) 是否小了还是大了,从而找到第一个 \(x - cnt_{<x} -1 = a_i\) 的点。注意,条件不能为 \(x - cnt_{<x} -1 \leq a_i\) , 因为可能会出现连续一段刚好等于 \(a_i\) 的点,而我们只需要第一个的下标即可,如果用这个条件,我们得到的是最后一个下标。

当然,这个二分条件其实还可以更简单,我们反过来记录右侧没出现的数字,那么 \(cnt_{<x}\) 直接代表左侧比 \(x\) 小的数字个数,那么条件为 \(cnt_{<x} < a_i\) 即可。

另外,二分套树状数组查询的复杂度是对数平方的,并不是最优的。我们可以直接使用树状数组本身的倍增性质进行二分,是最优的对数复杂度。我封装了两个常用的函数,大于等于 lower_bound 和大于 upper_bound

这道题查询 \(cnt_{<x} = a_i\) 的第一个点,我们 lower_bound 查询即可。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; template <class T>
class Fenwick {
int n;
vector<T> node; public:
Fenwick(int _n = 0) { init(_n); } void init(int _n) {
n = _n;
node.assign(n + 1, T());
} void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; } T query(int x) {
T ans = T();
for (int i = x;i >= 1;i -= i & -i) ans += node[i];
return ans;
}
T query(int l, int r) { return query(r) - query(l - 1); } int lower_bound(T val) {
int pos = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (pos + i <= n && node[pos + i] < val) {
pos += i;
val -= node[pos];
}
}
return pos + 1;
}
int upper_bound(T val) {
int pos = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (pos + i <= n && node[pos + i] <= val) {
pos += i;
val -= node[pos];
}
}
return pos + 1;
}
}; int a[8007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 2;i <= n;i++) cin >> a[i];
Fenwick<int> fw(n);
for (int i = 1;i <= n;i++) fw.update(i, 1); vector<int> ans(n + 1);
for (int i = n;i >= 1;i--) {
ans[i] = fw.lower_bound(a[i] + 1);
fw.update(ans[i], -1);
}
for (int i = 1;i <= n;i++) cout << ans[i] << '\n';
return 0;
}

NC51101 Lost Cows的更多相关文章

  1. [LeetCode] Bulls and Cows 公母牛游戏

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  2. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  3. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  4. LeetCode 299 Bulls and Cows

    Problem: You are playing the following Bulls and Cows game with your friend: You write down a number ...

  5. [Leetcode] Bulls and Cows

    You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...

  6. 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列

    第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...

  7. POJ2186 Popular Cows [强连通分量|缩点]

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31241   Accepted: 12691 De ...

  8. Poj2186Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31533   Accepted: 12817 De ...

  9. [poj2182] Lost Cows (线段树)

    线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...

  10. 【POJ3621】Sightseeing Cows

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8331   Accepted: 2791 ...

随机推荐

  1. getopt函数使用说明

    一.查询linux命令手册: #include<unistd.h> #include<getopt.h> /*所在头文件 */ int getopt(intargc, char ...

  2. redis linux源码安装

    1.官网下载安装包 2.解压 3.确认GCC环境 4.make 5.修改conf配置文件守护进程daemonize yes和默认密码requirepass password 5.启动 安装目录src/ ...

  3. TP5.0--5.1获取当前域名的方法

    TP5.0获取当前域名的方法 use think\Request; $request = Request::instance(); $domain = $request->domain(); 获 ...

  4. struts 1.x框架记录

    strus-config.xml 项目目录最顶层建立配置文件strus-config.xml action 通过type绑定java类,可通过attribute被引用 MyLoginForm.java ...

  5. scala apply方法和update方法

    示例代码1 class TestApplyClass { def apply(param: String): String = { println("apply method called, ...

  6. POI 获取chekbox textbox (精准定位)

    方式1:POI 方式2: xls 获取checkbox , 已经checkbox  的 label      (如果shape name 读取时一直为空, 用wps 打开excel , 保存后在测试) ...

  7. VSCode 快捷键,简化操作

    一. 区域代码快捷键 1. 折叠所有 折叠所有区域代码的快捷: ctrl + k      ctrl + 0 ; 展开所有折叠区域代码的快捷:ctrl +k      ctrl + J ; 2. 按层 ...

  8. rosetta Resfile语法和约束

    介绍 参考:https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/resfiles resfile包含输入到Pack ...

  9. Python查找存储区0KB文件并记录下地址

    查找存储区域中0KB大小文件,可以根据需要变更指定大小. #-*- coding: utf-8 -*- #!/usr/bin/python from os.path import isdir,absp ...

  10. Java程序死锁问题定位与解决

    更多内容,前往 IT-BLOG 一.概述 死锁是指两个或两个以上的进程在执行过程中,因争抢资源而造成的一种互相等待的现象,若无外力干涉它们将无法推进,如果系统资源充足,进程的资源请求能够得到满足,死锁 ...