NC51101 Lost Cows
题目
题目描述
\(N (2 \leq N \leq 8,000)\) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.
Regrettably, FJ does not have a way to sort them. Furthermore, he's not very good at observing problems. Instead of writing down each cow's brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.
Given this data, tell FJ the exact ordering of the cows.
输入描述
- Line 1: A single integer, N
- Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow in slot #2; line 3 describes the number of preceding cows whose brands are smaller than the cow in slot #3; and so on.
输出描述
- Lines 1..N: Each of the N lines of output tells the brand of a cow in line. Line #1 of the output tells the brand of the first cow in line; line 2 tells the brand of the second cow; and so on.
示例1
输入
5
1
2
1
0
输出
2
4
5
3
1
题解
知识点:树状数组,倍增,枚举。
首先需要一个事实,对于一个排列,要确定其中某个位置的数具体是多少,可以通过整个排列比它小的数字有多少个(或者比它大的数字有多少个)确定。现在这道题确定了各个位置的数的左边比它小的数的个数,我们只需要知道在它右边有多少个数比它小就行,因此我们从右往左枚举,依次确定数字。
首先用树状数组维护右侧出现的数字,随后需要二分一个 \(x\) 通过比较 \(x - cnt_{<x} -1 < a_i\) 得知 \(x\) 是否小了还是大了,从而找到第一个 \(x - cnt_{<x} -1 = a_i\) 的点。注意,条件不能为 \(x - cnt_{<x} -1 \leq a_i\) , 因为可能会出现连续一段刚好等于 \(a_i\) 的点,而我们只需要第一个的下标即可,如果用这个条件,我们得到的是最后一个下标。
当然,这个二分条件其实还可以更简单,我们反过来记录右侧没出现的数字,那么 \(cnt_{<x}\) 直接代表左侧比 \(x\) 小的数字个数,那么条件为 \(cnt_{<x} < a_i\) 即可。
另外,二分套树状数组查询的复杂度是对数平方的,并不是最优的。我们可以直接使用树状数组本身的倍增性质进行二分,是最优的对数复杂度。我封装了两个常用的函数,大于等于 lower_bound 和大于 upper_bound 。
这道题查询 \(cnt_{<x} = a_i\) 的第一个点,我们 lower_bound 查询即可。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <class T>
class Fenwick {
int n;
vector<T> node;
public:
Fenwick(int _n = 0) { init(_n); }
void init(int _n) {
n = _n;
node.assign(n + 1, T());
}
void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; }
T query(int x) {
T ans = T();
for (int i = x;i >= 1;i -= i & -i) ans += node[i];
return ans;
}
T query(int l, int r) { return query(r) - query(l - 1); }
int lower_bound(T val) {
int pos = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (pos + i <= n && node[pos + i] < val) {
pos += i;
val -= node[pos];
}
}
return pos + 1;
}
int upper_bound(T val) {
int pos = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (pos + i <= n && node[pos + i] <= val) {
pos += i;
val -= node[pos];
}
}
return pos + 1;
}
};
int a[8007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 2;i <= n;i++) cin >> a[i];
Fenwick<int> fw(n);
for (int i = 1;i <= n;i++) fw.update(i, 1);
vector<int> ans(n + 1);
for (int i = n;i >= 1;i--) {
ans[i] = fw.lower_bound(a[i] + 1);
fw.update(ans[i], -1);
}
for (int i = 1;i <= n;i++) cout << ans[i] << '\n';
return 0;
}
NC51101 Lost Cows的更多相关文章
- [LeetCode] Bulls and Cows 公母牛游戏
You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...
- POJ 2186 Popular Cows(Targin缩点)
传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31808 Accepted: 1292 ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- LeetCode 299 Bulls and Cows
Problem: You are playing the following Bulls and Cows game with your friend: You write down a number ...
- [Leetcode] Bulls and Cows
You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...
- 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列
第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...
- POJ2186 Popular Cows [强连通分量|缩点]
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31241 Accepted: 12691 De ...
- Poj2186Popular Cows
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31533 Accepted: 12817 De ...
- [poj2182] Lost Cows (线段树)
线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...
- 【POJ3621】Sightseeing Cows
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8331 Accepted: 2791 ...
随机推荐
- linux离线安装插件包
1.下载插件包(联网的linux环境下) # 检查是否安装了vim(vim-minimal是vi) [root@localhost opt]# rpm -qa | grep vim vim-minim ...
- 120、商城业务---订单服务---rabbitTemplate循环依赖问题
https://blog.csdn.net/qq_41731316/article/details/119803796
- NX二次开发获取当前DLL路径函数
string GetPath();//输出程序路径 string YiNingToolPath(string DLLDir); //分割程序路径获取工具目录 HMODULE GetSelfModule ...
- 查看服务器cpu 核心数
cpu相关信息所在文件是 /proc/cpuinfo 物理cpu数 # grep "physical id" /proc/cpuinfo | sort | uniq | wc -l ...
- 盘点10个最受欢迎IntelliJ IDEA主题,必有一款适合你!
选择一款适合自己的主题,这样每天工作才不会累!下面给大家精选了一批优秀的主题,并配上案例截图.如果有你喜欢的,那就赶紧去下载吧! Darcula 这是IntelliJ IDEA默认的暗色主题,适合长时 ...
- Kubernetes 的亲和性污点与容忍
写在前面 我们在使用k8s过程中经常有这样的需求:我的k8s集群有多台服务器,配置不尽相同.我想把数据库部署到CPU.内存比较好的这几台机:我想把静态承载服务部署到有固态硬盘的机器等:而这些需求,就是 ...
- 详解 printf() 函数
声明(叠甲):鄙人水平有限,本文章仅供参考. 1. 引子 #include <stdio.h> int main() { printf("hello world\n") ...
- ACM-学习记录-尺取法
题目 给定一个数组和一个数s,在这个数组中找一个区间,使得这个区间之和等于s. 例如:给定的数组int x[14] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
- Python之进程管理
使用python创建进程 from multiprocessing import Process # 导入进程模块 import time # 定义一个函数,测试创建进程使用 def task(nam ...
- pysimplegui之调试输出(easy_print = Print = eprint)
"Easy" API 系列中的另一个调用是EasyPrint. 与其他常用的 PySimpleGUI 调用一样,同一个调用还有其他名称.您可以使用Print或eprint除了Eas ...