NC51101 Lost Cows
题目
题目描述
\(N (2 \leq N \leq 8,000)\) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.
Regrettably, FJ does not have a way to sort them. Furthermore, he's not very good at observing problems. Instead of writing down each cow's brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.
Given this data, tell FJ the exact ordering of the cows.
输入描述
- Line 1: A single integer, N
- Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow in slot #2; line 3 describes the number of preceding cows whose brands are smaller than the cow in slot #3; and so on.
输出描述
- Lines 1..N: Each of the N lines of output tells the brand of a cow in line. Line #1 of the output tells the brand of the first cow in line; line 2 tells the brand of the second cow; and so on.
示例1
输入
5
1
2
1
0
输出
2
4
5
3
1
题解
知识点:树状数组,倍增,枚举。
首先需要一个事实,对于一个排列,要确定其中某个位置的数具体是多少,可以通过整个排列比它小的数字有多少个(或者比它大的数字有多少个)确定。现在这道题确定了各个位置的数的左边比它小的数的个数,我们只需要知道在它右边有多少个数比它小就行,因此我们从右往左枚举,依次确定数字。
首先用树状数组维护右侧出现的数字,随后需要二分一个 \(x\) 通过比较 \(x - cnt_{<x} -1 < a_i\) 得知 \(x\) 是否小了还是大了,从而找到第一个 \(x - cnt_{<x} -1 = a_i\) 的点。注意,条件不能为 \(x - cnt_{<x} -1 \leq a_i\) , 因为可能会出现连续一段刚好等于 \(a_i\) 的点,而我们只需要第一个的下标即可,如果用这个条件,我们得到的是最后一个下标。
当然,这个二分条件其实还可以更简单,我们反过来记录右侧没出现的数字,那么 \(cnt_{<x}\) 直接代表左侧比 \(x\) 小的数字个数,那么条件为 \(cnt_{<x} < a_i\) 即可。
另外,二分套树状数组查询的复杂度是对数平方的,并不是最优的。我们可以直接使用树状数组本身的倍增性质进行二分,是最优的对数复杂度。我封装了两个常用的函数,大于等于 lower_bound 和大于 upper_bound 。
这道题查询 \(cnt_{<x} = a_i\) 的第一个点,我们 lower_bound 查询即可。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <class T>
class Fenwick {
int n;
vector<T> node;
public:
Fenwick(int _n = 0) { init(_n); }
void init(int _n) {
n = _n;
node.assign(n + 1, T());
}
void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; }
T query(int x) {
T ans = T();
for (int i = x;i >= 1;i -= i & -i) ans += node[i];
return ans;
}
T query(int l, int r) { return query(r) - query(l - 1); }
int lower_bound(T val) {
int pos = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (pos + i <= n && node[pos + i] < val) {
pos += i;
val -= node[pos];
}
}
return pos + 1;
}
int upper_bound(T val) {
int pos = 0;
for (int i = 1 << __lg(n); i; i >>= 1) {
if (pos + i <= n && node[pos + i] <= val) {
pos += i;
val -= node[pos];
}
}
return pos + 1;
}
};
int a[8007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 2;i <= n;i++) cin >> a[i];
Fenwick<int> fw(n);
for (int i = 1;i <= n;i++) fw.update(i, 1);
vector<int> ans(n + 1);
for (int i = n;i >= 1;i--) {
ans[i] = fw.lower_bound(a[i] + 1);
fw.update(ans[i], -1);
}
for (int i = 1;i <= n;i++) cout << ans[i] << '\n';
return 0;
}
NC51101 Lost Cows的更多相关文章
- [LeetCode] Bulls and Cows 公母牛游戏
You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...
- POJ 2186 Popular Cows(Targin缩点)
传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31808 Accepted: 1292 ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- LeetCode 299 Bulls and Cows
Problem: You are playing the following Bulls and Cows game with your friend: You write down a number ...
- [Leetcode] Bulls and Cows
You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret numbe ...
- 【BZOJ3314】 [Usaco2013 Nov]Crowded Cows 单调队列
第一次写单调队列太垃圾... 左右各扫一遍即可. #include <iostream> #include <cstdio> #include <cstring> ...
- POJ2186 Popular Cows [强连通分量|缩点]
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31241 Accepted: 12691 De ...
- Poj2186Popular Cows
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31533 Accepted: 12817 De ...
- [poj2182] Lost Cows (线段树)
线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...
- 【POJ3621】Sightseeing Cows
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8331 Accepted: 2791 ...
随机推荐
- 探究Tomcat
一.什么是Tomcat? 用来装载javaWeb程序,可以称它为Web容器.是一个运行java的网络服务器,底层是Sochet的一个程序,他也是JSP和Servlet的一个容器. 二.什么要用Tomc ...
- pod进阶
一.Lifecycle 官网:https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/ 通过前面的分享,关于pod是什么相信看 ...
- vs2019 配置 qt6
1.下载qt6 我的目录C:\Qt\6.3.1\msvc2019_64\bin C:\Qt\6.3.1\msvc2019_64\include C:\Qt\6.3.1\msvc2019_64\lib ...
- USB TTL CMOS 电平
USB转TTL模块的作用就是把电平转换到双方都能识别进行通信. TTL电平信号规定,+5V等价于逻辑"1",0V等价于逻辑"0"(采用二进制来表示数据时).这样 ...
- GitHub远程仓库与本地仓库链接问题
git clone ...时,Failed to connect to 127.0.0.1 port 1080: Connection refused 步骤1------git查看: 查询动态代理 g ...
- 记录小程序字符串模板渲染WxParse
1.先去https://github.com/icindy/wxParse上downLoad代码,然后直接复制到项目里,跟pages目录同级 2.在要用的js页面声明 var WxParse = re ...
- Android笔记--案例:登录界面以及登录逻辑
登录界面的实现 就是说,界面的绘制,并没有什么难度,只要控制好空间的分配就可以了 登录的逻辑实现 获取验证码.忘记密码的界面跳转.登录的实现: 确认文本框的输入内容是否符合题意:
- 为什么 C# 可能是最好的第一编程语言
纵观神州大地,漫游中华互联网,我看到很多人关注为什么你应该开始学习JavaScript做前端,而对blazor这样的面向未来的框架有种莫名的瞧不起,或者为什么你应该学习Python作为你的第一门编程语 ...
- MySQL 开发规范【X千万/表级别】
一.MySQL 开发规范概述 原则:SQL开发规范制定是基于良好的编码习惯和可读性:目的:消除冗余,数据简约,提高效率,提高安全:范围:<SQL开发规范手册> 二.MySQL 开发规范手册 ...
- Vue中使用axios发起POST请求成功,却被挂起
服务器能接收请求并处理,控制台没有报错,axios().catch也没有捕获异常.随后查看控制台网络页,发现被挂起 在Stack搜到同问题,上面说将axios()函数返回用.then查看被挂起信息.n ...