Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a 。操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 行每行两个正整数 from, to , 表示该树中存在一条边 (from, to) 。再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

明显的树剖裸题,不过没有一遍切掉就很可惜.

貌似只有边权转点权的时候需要判断\(x==y\)?

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#define int long long
#define R register
#define N 100008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,head[N],tot,f[N],son[N],size[N],depth[N];
struct cod{int u,v;}edge[N<<2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void dfs1(int u,int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
int idx,dfn[N],fdfn[N],top[N];
void dfs2(int u,int t)
{
top[u]=t;dfn[u]=++idx;fdfn[idx]=u;
if(son[u]==-1)return;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
#define ls o<<1
#define rs o<<1|1
int tr[N<<2],tg[N<<2],a[N];
inline void up(int o){tr[o]=tr[ls]+tr[rs];}
inline void down(int o,int l,int r)
{
if(tg[o])
{
int mid=(l+r)>>1;
tg[ls]+=tg[o];tg[rs]+=tg[o];
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void build(int o,int l,int r)
{
if(l==r)
{
tr[o]=a[fdfn[l]];
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tg[o]+=z;
tr[o]+=(r-l+1)*z;
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid) change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int mid=(l+r)>>1,res=0;
if(x<=mid) res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int tquery(int x,int y)
{
int fx=top[x],fy=top[y],res=0;
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
res+=query(1,1,idx,dfn[fx],dfn[x]);
x=f[fx];
}
else
{
res+=query(1,1,idx,dfn[fy],dfn[y]);
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(dfn[x]>dfn[y])swap(x,y);
res+=query(1,1,idx,dfn[x],dfn[y]);
return res;
}
signed main()
{
in(n),in(m);memset(son,-1,sizeof son);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y);add(y,x);
}
dfs1(1,0);dfs2(1,1);build(1,1,n);
for(R int opt,x,y;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y);
change(1,1,n,dfn[x],dfn[x],y);
}
if(opt==2)
{
in(x),in(y);
change(1,1,n,dfn[x],dfn[x]+size[x]-1,y);
}
if(opt==3)
{
in(x);
printf("%lld\n",tquery(1,x));
}
}
}

树链剖分【p3178】[HAOI2015]树上操作的更多相关文章

  1. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

  2. P3178 [HAOI2015]树上操作

    P3178 [HAOI2015]树上操作 思路 板子嘛,其实我感觉树剖没啥脑子 就是debug 代码 #include <bits/stdc++.h> #define int long l ...

  3. 洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树

    题目链接:https://www.luogu.org/problem/P3178 这道题目是一道树链剖分的模板题. 但是在解决这道问题的同事刷新了我的两个认识: 第一个认识是:树链剖分不光可以处理链, ...

  4. 洛谷P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  5. LUOGU P3178 [HAOI2015]树上操作

    传送门 解题思路 树链剖分裸题,线段树维护. 代码 #include<iostream> #include<cstdio> #include<cstring> #d ...

  6. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  7. 洛谷P3178 [HAOI2015]树上操作(线段树)

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  8. 洛谷 P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  9. 洛谷——P3178 [HAOI2015]树上操作

    https://www.luogu.org/problem/show?pid=3178#sub 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 ...

  10. 【luogu P3178 [HAOI2015]树上操作】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3178 模板题 菜 #include <cstdio> #include <cstring& ...

随机推荐

  1. 运用Pascal来破坏DLL的一个实例

    运用Pascal来破坏DLL文件的一个实例 关于Pascal静态调用和动态的调用DLL的学习您可以看Delphi/Lazarus栏目. Uses Dos; {调用DOS库} Const Root='C ...

  2. 【非原创】tomcat 安装时出现 Failed to install Tomcat7 service

    tomcat 安装时出现 Failed to install Tomcat7 service 今天在安装tomcat时提示 Failed to install Tomcat7 service了,花了大 ...

  3. Leetcode 671.二叉树中第二小的节点

    二叉树中第二小的节点 给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0.如果一个节点有两个子节点的话,那么这个节点的值不大于它的子节点的值. 给出这样的一个二叉树 ...

  4. 决策树之CART算法

    顾名思义,CART算法(classification and regression tree)分类和回归算法,是一种应用广泛的决策树学习方法,既然是一种决策树学习方法,必然也满足决策树的几大步骤,即: ...

  5. hadoop2.6.4【ubuntu】单机环境搭建 系列1

    jdk安装 tar zxvf jdk mv jdk /usr/lib/jvm/java jdk环境变量配置 vim /etc/profile ``` export JAVA_HOME=/usr/lib ...

  6. PHP命名空间与use

    当在一个大型项目很多程序员书写模板时,最怕出现的问题就是命名,如果一个PHP脚本出现了同名的类或者方法,就会报错(fatal error),使用命名空间可以 解决这个问题 知识点: 命名空间names ...

  7. icon fonts generator & svg

    icon fonts generator https://icomoon.io/app/#/select https://icomoon.io/ http://fontastic.me/ http:/ ...

  8. P2052 [NOI2011]道路修建

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...

  9. POJ 3243 Clever Y | BSGS算法完全版

    题目: 给你A,B,K 求最小的x满足Ax=B (mod K) 题解: 如果A,C互质请参考上一篇博客 将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理. 我们将方程一直除去A,C的最大 ...

  10. Codeforces 932.C Permutation Cycle

    C. Permutation Cycle time limit per test 2 seconds memory limit per test 256 megabytes input standar ...