CF1252J Tiling Terrace
CF1252J Tiling Terrace
题目描述
Talia has just bought an abandoned house in the outskirt of Jakarta. The house has a nice and long yard which can be represented as a one-dimensional grid containing 1 \times N1×N cells. To beautify the house, Talia is going to build a terrace on the yard by tiling the cells. Each cell on the yard contains either soil (represented by the character '.') or rock (represented by the character '#'), and there are at most 5050 cells containing rocks.
Being a superstitious person, Talia wants to tile the terrace with mystical tiles that have the power to repel ghosts. There are three types of mystical tiles:
- Type-1: Covers 1 \times 11×1 cell and can only be placed on a soil cell (".").
- Type-2: Covers 1 \times 21×2 cells and can only be placed on two consecutive soil cells ("..").
- Type-3: Covers 1 \times 31×3 cells and can only be placed on consecutive soil-rock-soil cells (".#.").
Each tile of Type-1, Type-2, and Type-3 has the power to repel G_1G1 , G_2G2 , and G_3G3 ghosts per day, respectively. There are also some mystical rules which must be followed for the power to be effective:
- There should be no overlapping tiles, i.e. each cell is covered by at most one tile.
- There should be at most KK tiles of Type-1, while there are no limitations for tiles of Type-2 and Type-3.
Talia is scared of ghosts, thus, the terrace (which is tiled by mystical tiles) should be able to repel as many ghosts as possible. Help Talia to find the maximum number of ghosts that can be repelled per day by the terrace. Note that Talia does not need to tile all the cells on the yard as long as the number of ghosts that can be repelled by the terrace is maximum.
输入格式
Input begins with a line containing five integers: NN KK G_1G1 G_2G2 G_3G3 ( 1 \le N \le 100,0001≤N≤100000 ; 0 \le K \le N0≤K≤N ; 0 \le G_1, G_2, G_3 \le 10000≤G1,G2,G3≤1000 ) representing the number of cells, the maximum number of tiles of Type-1, the number of ghosts repelled per day by a tile of Type-1, the number of ghosts repelled per day by a tile of Type-2, and the number of ghosts repelled by a tile of Type-3, respectively. The next line contains a string of NN characters representing the yard. Each character in the string is either '.' which represents a soil cell or '#' which represents a rock cell. There are at most 5050 rock cells.
输出格式
Output in a line an integer representing the maximum number of ghosts that can be repelled per day.
输入输出样例
输入 #1复制
输出 #1复制
输入 #2复制
输出 #2复制
输入 #3复制
输出 #3复制
说明/提示
Explanation for the sample input/output #1
Let "A" be a tile of Type-1, "BB" be a tile of Type-2, and "CCC" be a tile of Type-3. The tiling "ACCCBB" in this case produces the maximum number of ghosts that can be repelled, i.e. 10 + 40 + 25 = 7510+40+25=75
Explanation for the sample input/output #2
This sample input has the same yard with the previous sample input, but each tile of Type-2 can repel more ghosts per day. The tiling "BB#BBA" or "BB#ABB" produces the maximum number of ghosts that can be repelled, i.e. 100 + 100 + 10 = 210100+100+10=210 . Observe that the third cell is left untiled.
Explanation for the sample input/output #3
The tiling "ACCCA.#", "ACCC.A#", or ".CCCAA#" produces the maximum number of ghosts that can be repelled, i.e. 30 + 100 + 30 = 16030+100+30=160 . Observe that there is no way to tile the last cell.
题解:
非常容易判断是一道\(DP\)的题目。
联想一下这道题目:CF358D Dima and Hares
那么我们分方式决策,可以看出:第一种和第二种的选择都仅包含".",只有第三种选择有"#",那么我们可以考虑分段进行决策:将整个序列分成以"#"相隔开的段,并用\(a[i]\)数组保存\(i\)段中"."的个数。
那么我们设置状态\(dp[i][j][0/1]\)表示前\(j\)段用了\(i\)次方式\(1\),后面的\(0/1\)表示最后的"#"有没有用方式\(3\)所获得的最大价值。
那么我们转移的时候就只需要考虑方式二的使用次数。
转移方程需要分类讨论。另外地,还有一种情况是不选择完这\(n\)个字符。这个东西可以在枚举方式1的时候用除以二自动取整来实现。
可以结合代码理解:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int maxn=1e5+10;
int n,k,g1,g2,g3,tot,ans;
char s[maxn];
int a[maxn],dp[60][maxn][5];
//dp[i][j][0/1]表示前j段使用i次方式1,最后一个"#"是否选用方式3所得的最大利益。
signed main()
{
scanf("%I64d%I64d%I64d%I64d%I64d",&n,&k,&g1,&g2,&g3);
scanf("%s",s+1);
tot=1;
for(int i=1;i<=n;i++)
{
if(s[i]=='#')
tot++;
else
a[tot]++;
}
while(tot && !a[tot])
tot--;
if(!tot)
{
puts("0");
return 0;
}
memset(dp,0xcf,sizeof(dp));
dp[0][0][0]=0;
for(int i=1;i<=tot;i++)
for(int j=0;j<=k;j++)
{
int t=min(a[i],j);
for(int l=0;l<=t;l++)
{
if(l<=a[i])
dp[i][j][0]=max(dp[i][j][0],dp[i-1][j-l][0]+(a[i]-l)/2*g2+l*g1);
if(l<=a[i]-1)
{
dp[i][j][0]=max(dp[i][j][0],dp[i-1][j-l][1]+(a[i]-l-1)/2*g2+g3+l*g1);
dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-l][0]+(a[i]-l-1)/2*g2+l*g1);
}
if(l<=a[i]-2)
dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-l][1]+(a[i]-l-2)/2*g2+g3+l*g1);
}
}
for(int i=0;i<=k;i++)
ans=max(ans,dp[tot][i][0]);
printf("%I64d",ans);
return 0;
}
CF1252J Tiling Terrace的更多相关文章
- Tiling Terrace CodeForces - 1252J(dp、贪心)
Tiling Terrace \[ Time Limit: 1000 ms\quad Memory Limit: 262144 kB \] 题意 给出一个字符串 \(s\),每次可以选择三种类型来获得 ...
- 【CF1252J】Tiling Terrace(DP)
题意:有一个长为n的串,每个字符是#或者.中的一个,#不超过50个 有3种覆盖串的方式:(.),(..),(.#.),分别能获得g1,g2,g3的收益,覆盖之间不能重叠 第一种方式不能使用超过K次,问 ...
- 2019-2020 ICPC, Asia Jakarta Regional Contest
目录 Contest Info Solutions A. Copying Homework C. Even Path E. Songwriter G. Performance Review H. Tw ...
- Texture tiling and swizzling
Texture tiling and swizzling 原帖地址:http://fgiesen.wordpress.com If you’re working with images in your ...
- 图文详解Unity3D中Material的Tiling和Offset是怎么回事
图文详解Unity3D中Material的Tiling和Offset是怎么回事 Tiling和Offset概述 Tiling表示UV坐标的缩放倍数,Offset表示UV坐标的起始位置. 这样说当然是隔 ...
- POJ3420Quad Tiling(矩阵快速幂)
Quad Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3740 Accepted: 1684 Descripti ...
- Tri Tiling[HDU1143]
Tri Tiling Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- Tiling 分类: POJ 2015-06-17 15:15 8人阅读 评论(0) 收藏
Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8091 Accepted: 3918 Descriptio ...
- Tiling Up Blocks_DP
Description Michael The Kid receives an interesting game set from his grandparent as his birthday gi ...
随机推荐
- RabbitMQ学习笔记(三、生产者与消费者)
目录: 细说交换器 细说队列 发送消息 消费消息 确认与拒绝 细说交换器: 1.方法: public AMQP.Exchange.DeclareOk exchangeDeclare(String ex ...
- WindowsOS下Nginx+PHP环境配置
Nginx 配置虚拟主机 在conf目录中的nginx.conf中最后一行前面加上 include vhost/*.conf; 在conf目录中添加一个文件夹vhost(此文件夹用来保存Nginx虚拟 ...
- mathematica练习程序(曲线的曲率与挠率)
曲线的曲率k表示曲线的弯曲程度. 计算公式: 曲线的挠率tao表示曲率平面的扭曲程度,平面曲线挠率为0. 计算公式: 这里r代表曲线方程,比如有如下曲线方程:r={a*cos(t),a*sin(t), ...
- 无限可能,Elasticsearch(一)
这个世界已然被数据淹没.多年来,我们系统间流转和产生的大量数据已让我们不知所措. 现有的技术都集中在如何解决数据仓库存储以及如何结构化这些数据. 这些看上去都挺美好,直到你实际需要基于这些数据实时做决 ...
- cd 到目录自动ls
$vim ~/.bashrc 文件末尾加入: cdls() { cd "${1}" ls; } alias cd='cdls' $source ~/.bashrc
- 试着用workerman开发一个在线聊天应用
聊天功能是很常见的一种功能,Workerman是一款开源高性能异步PHP socket即时通讯框架. 什么是Workerman? Workerman是一款 开源 高性能异步 PHP socket即时通 ...
- ARM64 的 memcpy 优化与实现
参考:https://www.byteisland.com/arm64-%E7%9A%84-memcpy-%E6%B1%87%E7%BC%96%E5%88%86%E6%9E%90/ libc/stri ...
- P站全新官方精选集Pixivision
P站是一个主要由日本艺术家所组成的虚拟社群,主打插画.漫画.二次元作品网上沟通. 不过好消息是,P站全新的精选网站Pixivision上线了,多种语言界面,国内用户访问毫无压力. 近期精选的一系列作品 ...
- Spring Cloud Alibaba基础教程:Sentinel Dashboard同步Apollo存储规则
在之前的两篇教程中我们分别介绍了如何将Sentinel的限流规则存储到Nacos和Apollo中.同时,在文末的思考中,我都指出了这两套整合方案都存在一个不足之处:不论采用什么配置中心,限流规则都只能 ...
- 死磕 java同步系列之CountDownLatch源码解析