CF1252J Tiling Terrace

洛谷评测传送门

题目描述

Talia has just bought an abandoned house in the outskirt of Jakarta. The house has a nice and long yard which can be represented as a one-dimensional grid containing 1 \times N1×N cells. To beautify the house, Talia is going to build a terrace on the yard by tiling the cells. Each cell on the yard contains either soil (represented by the character '.') or rock (represented by the character '#'), and there are at most 5050 cells containing rocks.

Being a superstitious person, Talia wants to tile the terrace with mystical tiles that have the power to repel ghosts. There are three types of mystical tiles:

  • Type-1: Covers 1 \times 11×1 cell and can only be placed on a soil cell (".").
  • Type-2: Covers 1 \times 21×2 cells and can only be placed on two consecutive soil cells ("..").
  • Type-3: Covers 1 \times 31×3 cells and can only be placed on consecutive soil-rock-soil cells (".#.").

Each tile of Type-1, Type-2, and Type-3 has the power to repel G_1G1 , G_2G2 , and G_3G3 ghosts per day, respectively. There are also some mystical rules which must be followed for the power to be effective:

  • There should be no overlapping tiles, i.e. each cell is covered by at most one tile.
  • There should be at most KK tiles of Type-1, while there are no limitations for tiles of Type-2 and Type-3.

Talia is scared of ghosts, thus, the terrace (which is tiled by mystical tiles) should be able to repel as many ghosts as possible. Help Talia to find the maximum number of ghosts that can be repelled per day by the terrace. Note that Talia does not need to tile all the cells on the yard as long as the number of ghosts that can be repelled by the terrace is maximum.

输入格式

Input begins with a line containing five integers: NN KK G_1G1 G_2G2 G_3G3 ( 1 \le N \le 100,0001≤N≤100000 ; 0 \le K \le N0≤KN ; 0 \le G_1, G_2, G_3 \le 10000≤G1,G2,G3≤1000 ) representing the number of cells, the maximum number of tiles of Type-1, the number of ghosts repelled per day by a tile of Type-1, the number of ghosts repelled per day by a tile of Type-2, and the number of ghosts repelled by a tile of Type-3, respectively. The next line contains a string of NN characters representing the yard. Each character in the string is either '.' which represents a soil cell or '#' which represents a rock cell. There are at most 5050 rock cells.

输出格式

Output in a line an integer representing the maximum number of ghosts that can be repelled per day.

输入输出样例

输入 #1复制

输出 #1复制

输入 #2复制

输出 #2复制

输入 #3复制

输出 #3复制

说明/提示

Explanation for the sample input/output #1

Let "A" be a tile of Type-1, "BB" be a tile of Type-2, and "CCC" be a tile of Type-3. The tiling "ACCCBB" in this case produces the maximum number of ghosts that can be repelled, i.e. 10 + 40 + 25 = 7510+40+25=75

Explanation for the sample input/output #2

This sample input has the same yard with the previous sample input, but each tile of Type-2 can repel more ghosts per day. The tiling "BB#BBA" or "BB#ABB" produces the maximum number of ghosts that can be repelled, i.e. 100 + 100 + 10 = 210100+100+10=210 . Observe that the third cell is left untiled.

Explanation for the sample input/output #3

The tiling "ACCCA.#", "ACCC.A#", or ".CCCAA#" produces the maximum number of ghosts that can be repelled, i.e. 30 + 100 + 30 = 16030+100+30=160 . Observe that there is no way to tile the last cell.

题解:

非常容易判断是一道\(DP\)的题目。

联想一下这道题目:CF358D Dima and Hares

那么我们分方式决策,可以看出:第一种和第二种的选择都仅包含".",只有第三种选择有"#",那么我们可以考虑分段进行决策:将整个序列分成以"#"相隔开的段,并用\(a[i]\)数组保存\(i\)段中"."的个数。

那么我们设置状态\(dp[i][j][0/1]\)表示前\(j\)段用了\(i\)次方式\(1\),后面的\(0/1\)表示最后的"#"有没有用方式\(3\)所获得的最大价值。

那么我们转移的时候就只需要考虑方式二的使用次数。

转移方程需要分类讨论。另外地,还有一种情况是不选择完这\(n\)个字符。这个东西可以在枚举方式1的时候用除以二自动取整来实现。

可以结合代码理解:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int maxn=1e5+10;
int n,k,g1,g2,g3,tot,ans;
char s[maxn];
int a[maxn],dp[60][maxn][5];
//dp[i][j][0/1]表示前j段使用i次方式1,最后一个"#"是否选用方式3所得的最大利益。
signed main()
{
scanf("%I64d%I64d%I64d%I64d%I64d",&n,&k,&g1,&g2,&g3);
scanf("%s",s+1);
tot=1;
for(int i=1;i<=n;i++)
{
if(s[i]=='#')
tot++;
else
a[tot]++;
}
while(tot && !a[tot])
tot--;
if(!tot)
{
puts("0");
return 0;
}
memset(dp,0xcf,sizeof(dp));
dp[0][0][0]=0;
for(int i=1;i<=tot;i++)
for(int j=0;j<=k;j++)
{
int t=min(a[i],j);
for(int l=0;l<=t;l++)
{
if(l<=a[i])
dp[i][j][0]=max(dp[i][j][0],dp[i-1][j-l][0]+(a[i]-l)/2*g2+l*g1);
if(l<=a[i]-1)
{
dp[i][j][0]=max(dp[i][j][0],dp[i-1][j-l][1]+(a[i]-l-1)/2*g2+g3+l*g1);
dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-l][0]+(a[i]-l-1)/2*g2+l*g1);
}
if(l<=a[i]-2)
dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-l][1]+(a[i]-l-2)/2*g2+g3+l*g1);
}
}
for(int i=0;i<=k;i++)
ans=max(ans,dp[tot][i][0]);
printf("%I64d",ans);
return 0;
}

CF1252J Tiling Terrace的更多相关文章

  1. Tiling Terrace CodeForces - 1252J(dp、贪心)

    Tiling Terrace \[ Time Limit: 1000 ms\quad Memory Limit: 262144 kB \] 题意 给出一个字符串 \(s\),每次可以选择三种类型来获得 ...

  2. 【CF1252J】Tiling Terrace(DP)

    题意:有一个长为n的串,每个字符是#或者.中的一个,#不超过50个 有3种覆盖串的方式:(.),(..),(.#.),分别能获得g1,g2,g3的收益,覆盖之间不能重叠 第一种方式不能使用超过K次,问 ...

  3. 2019-2020 ICPC, Asia Jakarta Regional Contest

    目录 Contest Info Solutions A. Copying Homework C. Even Path E. Songwriter G. Performance Review H. Tw ...

  4. Texture tiling and swizzling

    Texture tiling and swizzling 原帖地址:http://fgiesen.wordpress.com If you’re working with images in your ...

  5. 图文详解Unity3D中Material的Tiling和Offset是怎么回事

    图文详解Unity3D中Material的Tiling和Offset是怎么回事 Tiling和Offset概述 Tiling表示UV坐标的缩放倍数,Offset表示UV坐标的起始位置. 这样说当然是隔 ...

  6. POJ3420Quad Tiling(矩阵快速幂)

    Quad Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3740 Accepted: 1684 Descripti ...

  7. Tri Tiling[HDU1143]

    Tri Tiling Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. Tiling 分类: POJ 2015-06-17 15:15 8人阅读 评论(0) 收藏

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8091   Accepted: 3918 Descriptio ...

  9. Tiling Up Blocks_DP

    Description Michael The Kid receives an interesting game set from his grandparent as his birthday gi ...

随机推荐

  1. openjdk源码下载

    http://hg.openjdk.java.net/jdk8u/jdk8u60/jdk/file/935758609767 browse>zip

  2. [WPF]实现TextBox文本框单击全选

    原文:[WPF]实现TextBox文本框单击全选 /// <summary>         /// Void:设置获取焦点时全选文本         /// </summary&g ...

  3. k8s发布文件记录

    1.环境变量配置项 apiVersion: v1 # api版本 kind: ConfigMap # 配置项 metadata: name: common-key-svc # 名字 namespace ...

  4. ElementTree类

    elementtree主要是一个包含根节点的树的文档包装器 它提供了序列化和一般文档处理的两种方法 from lxml import etree str = '''<?xml version=& ...

  5. mysql8报错解析

    1. 场景描述 想把测试数据导一份到本地使用,乱入装了mysql8,使用springboot项目启动的时候报: java.sql.SQLException: The server time zone ...

  6. pytest执行用例时从conftest.py抛出ModuleNotFoundError:No module named 'XXX'异常的解决办法

    一.问题描述 在项目根目录下执行整个测试用例,直接从conftest.py模块中抛出了ModuleNotFoundError:No module named 'TestDatas'的异常: 二.解决方 ...

  7. selenium三大切换的骚操作之显性等待

    一.handle窗口切换 当点击某个元素后,会重新生成一个新的页签,但此时我们的操作仍然在原先的窗口当中,如果要在新的窗口继续操作元素,那么就要用到handle窗口切换的方法. 常用方法: windo ...

  8. ubuntu 库依赖问题

    安装apt-file, 可以查找各种库依赖的文件,或查找某个app的依赖库: sudo apt install apt-file apt-file update apt-flie search rpc ...

  9. windows 10使用vscode进行远程代码开发 | tutorial to use vscode for remote development using ssh on windows

    本文首发于个人博客https://kezunlin.me/post/c93b6ba6/,欢迎阅读最新内容! tutorial to use vscode for remote development ...

  10. C#截图操作(几种截图方法)

    公共函数获取屏幕截图private Bitmap GetScreenCapture(){ Rectangle tScreenRect = new Rectangle(0, 0, Screen.Prim ...