【bzoj3439】Kpm的MC密码 可持久化Trie树
题目描述
背景
想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的。。。),于是乎,他现在理所当然地忘记了密码,只能来解答那些神奇的身份验证问题了。。。
描述
Kpm当年设下的问题是这样的:
现在定义这么一个概念,如果字符串s是字符串c的一个后缀,那么我们称c是s的一个kpm串。
系统将随机生成n个由a…z组成的字符串,由1…n编号(s1,s2…,sn),然后将它们按序告诉你,接下来会给你n个数字,分别为k1…kn,对于每一个ki,要求你求出列出的n个字符串中所有是si的kpm串的字符串的编号中第ki小的数,如果不存在第ki小的数,则用-1代替。(比如说给出的字符串是cd,abcd,bcd,此时k1=2,那么”cd”的kpm串有”cd”,”abcd”,”bcd”,编号分别为1,2,3其中第2小的编号就是2)(PS:如果你能在相当快的时间里回答完所有n个ki的查询,那么你就可以成功帮kpm进入MC啦~~)
输入
第一行一个整数 n 表示字符串的数目
接下来第二行到n+1行总共n行,每行包括一个字符串,第i+1行的字符串表示编号为i的字符串
接下来包括n行,每行包括一个整数ki,意义如上题所示
输出
包括n行,第i行包括一个整数,表示所有是si的kpm串的字符串的编号中第ki小的数
样例输入
3
cd
abcd
bcd
2
3
1
样例输出
2
-1
2
题解
可持久化线段树+Trie树
看到网上大把大把的题解都是可持久化线段树,其实感觉这道题并不用这么麻烦啊,直接上一个可持久化Trie树就好了。
因为"kpm串"是后缀包含关系,所以我们把每个串倒过来,变成前缀包含,这样就可以使用Trie树来维护。
建立可持久化Trie树,对于每个字符串,想找某区间内它的“kpm串”的个数,就可以在这棵可持久化Trie树上遍历,直到找到该串的的位置,看一下size的差是否为0即可。
用这个方法我们来实现查询。这里的查询操作类似于主席树的查询,先看[l,mid]中有多少个,如果不小于要查询的则在[l,mid]中查找,否则在[mid+1,r]中查找,直到l=r时即为答案。
时间复杂度是$O(\log n\sum\limits_{i=1}^nlen_i)$。
由于没有给出每个串的长度限制,使得我们不能使用二维数组存储字符串,所以需要使用一个vector来储存。
需要注意的一点是由于每个串的长度不同,所以建立可持久化Trie树时需要将结尾位置的c指针与x对应的位置的c指针合并,即next[y][]=next[x][]
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#define N 200010
#define M 600010
using namespace std;
vector<int> v[N];
char str[M];
int c[M][26] , si[M] , tot , root[N];
int insert(int x , int p)
{
int tmp , y , i , j;
tmp = y = ++tot;
for(i = 0 ; i < (int)v[p].size() ; i ++ )
{
for(j = 0 ; j < 26 ; j ++ ) c[y][j] = c[x][j];
x = c[x][v[p][i]] , c[y][v[p][i]] = ++tot , y = c[y][v[p][i]] , si[y] = si[x] + 1;
}
for(i = 0 ; i < 26 ; i ++ ) c[y][i] = c[x][i];
return tmp;
}
int query(int p , int k , int l , int r)
{
if(l == r) return l;
int mid = (l + r) >> 1 , i , t1 = root[l - 1] , t2 = root[mid];
for(i = 0 ; i < (int)v[p].size() ; i ++ ) t1 = c[t1][v[p][i]] , t2 = c[t2][v[p][i]];
if(si[t2] - si[t1] >= k) return query(p , k , l , mid);
else return query(p , k - si[t2] + si[t1] , mid + 1 , r);
}
int main()
{
int n , i , j , t , k;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str) , t = strlen(str);
for(j = t - 1 ; ~j ; j -- ) v[i].push_back(str[j] - 'a');
root[i] = insert(root[i - 1] , i);
}
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &k);
for(t = root[n] , j = 0 ; j < (int)v[i].size() ; j ++ ) t = c[t][v[i][j]];
printf("%d\n" , si[t] >= k ? query(i , k , 1 , n) : -1);
}
return 0;
}
【bzoj3439】Kpm的MC密码 可持久化Trie树的更多相关文章
- BZOJ3439: Kpm的MC密码
3439: Kpm的MC密码 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 166 Solved: 79[Submit][Status] Descr ...
- BZOJ3439 Kpm的MC密码(可持久化trie)
将串反过来就变成查询前缀了.考虑建一棵可持久化trie,查询时二分答案,均摊一下复杂度即为O(mlogn). #include<iostream> #include<cstdio&g ...
- 【BZOJ3439】Kpm的MC密码 Trie树+可持久化线段树
[BZOJ3439]Kpm的MC密码 Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当 ...
- 【BZOJ3439】 Kpm的MC密码 (TRIE+主席树)
3439: Kpm的MC密码 Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当然地忘记 ...
- BZOJ 3439: Kpm的MC密码( trie + DFS序 + 主席树 )
把串倒过来插进trie上, 那么一个串的kpm串就是在以这个串最后一个为根的子树, 子树k大值的经典问题用dfs序+可持久化线段树就可以O(NlogN)解决 --------------------- ...
- 【BZOJ】【3439】Kpm的MC密码
Trie树/可持久化线段树 神题啊……搞了我一下午= =(其实第233个提交也是我的) 我一开始的思路:这个找kpm串的过程,其实就跟在AC自动机上沿fail倒着往下走是差不多的(看当前是哪些点的后缀 ...
- [FJOI2015]火星商店问题(线段树分治,可持久化,Trie树)
[FJOI2015]火星商店问题 前天考了到线段树分治模板题,全场都切了,就我不会QAQ 于是切题无数的Tyher巨巨就告诉我:"你可以去看看火星商店问题,看了你就会了." 第一道 ...
- 可持久化Trie树初步
可持久化Trie树和可持久化线段树很像,依次插入信息,通过减法来进行历史版本查询. 2015年11月27日 bzoj3261 最大异或和 我们需要计算 a[p] xor a[p+1] xor ... ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
随机推荐
- BZOJ 2654: tree Kruskal+二分答案
2654: tree Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1863 Solved: 736[Submit][Status][Discuss ...
- UVA 110020 Efficient Solutions (STL)
把一个人看出一个二维的点,优势的点就是就原点为左下角,这个点为右上角的矩形,包含除了右上角以外边界,其他任意地方不存在点. 那么所有有优势的点将会形成一条下凹的曲线. 因为可能有重点,用multise ...
- UVA 12171 (hdu 2771)sculptrue(离散化)
以前对离散化的理解不够,所以把端点和区间区分来考虑但是做完这题以后有了新的认识: 先来看一个问题:给你以下的网格,你需要多少空间去存储红点区间的信息呢? 只需要图上所示的1,2,3,4个点就足够表示红 ...
- C07 模块化开发信息管理系统案例
目录 需求分析 问题分析 开发阶段 需求分析 总体需求 学员信息管理系统支持以下功能 增加学员信息功能 删除学员信息功能 查询学员信息功能 修改学员信息功能 输出所有学员信息功能 退出系统 其他需求 ...
- javascript 完整知识点整理
by 蔡舒啸 目录 一 5种基本类型 typeof 关键字 三种强制类型转换 日期 二 if语句for语句whiledo-whileswitch-case 比较运算符 逻辑运算符 if for语句 w ...
- iOS 开发 Xib 的嵌套使用
最近公司项目需要使用 Xib 中嵌套 Xib来布局界面的, 研究了很久才实现!!! 分享给大家,希望帮助到更多的开发者...... 开发中自定义界面有两种方式 一: 纯代码实现 适合单个极度复杂的界面 ...
- cesium 基于天地图服务 完成底图标注渲染加切换
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 头文件string与string.h的区别
在C++中,#include<iostream>与#include<iostream.h>的区别,前者要使用更新的编译器(其实大部分编译器多比较前卫了,出了有些搞嵌入式的用变态 ...
- composer安装laravel-u-editor及其使用
前言 使用的框架是laravel5.1,是composer搭建的,可以直接配置composer,如果不是composer搭建的larave,需要先安装composer,具体安装发放可以参考compo ...
- jCarousel,jQuery下的滚动切换传送插件
转自:http://www.zhangxinxu.com/jq/jcarousel_zh/#Examples 介绍 jCarousel是一款 jQuery 插件, 用来控制水平或垂直排列的列表项. 这 ...