193:棋盘分割

总时间限制: 
1000ms

内存限制: 
65536kB
描述
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差,其中平均值,xi为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O'的最小值。
输入
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
输出
仅一个数,为O'(四舍五入精确到小数点后三位)。
样例输入
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
样例输出
1.633
来源
Noi 99
 /*
z
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define INF 0x3f3f3f3f
using namespace std;
int n;
int s[][][][],c[][];
int f[][][][][];
int add(int x1,int y1,int x2,int y2 )
{
int w=;
for(int i=x1;i<=x2;i++)
for(int j=y1;j<=y2;j++)
w+=c[i][j];
return w;
}
int dfs(int k,int x1,int y1,int x2,int y2)
{
if(f[k][x1][y1][x2][y2]!=-)
return f[k][x1][y1][x2][y2];
f[k][x1][y1][x2][y2]=INF;
if(x1<x2)//横切
{
for(int x=x1; x<x2; x++)
{
int t1=dfs(k-,x+,y1,x2,y2); //取上面那么递归计算下面
int t2=dfs(k-,x1,y1,x,y2); //去下面那么递归计算上面
int t=min(t1+s[x1][y1][x][y2],t2+s[x+][y1][x2][y2]);
f[k][x1][y1][x2][y2]=min(f[k][x1][y1][x2][y2],t);
}
}
if(y1<y2)
{
for(int y=y1;y<y2;y++)
{
int t1=dfs(k-,x1,y+,x2,y2) ; //选左边那么递归计算右边
int t2=dfs(k-,x1,y1,x2,y); //选右边那么递归计算左边
int t=min(t1+s[x1][y1][x2][y],t2+s[x1][y+][x2][y2]);
f[k][x1][y1][x2][y2]=min(f[k][x1][y1][x2][y2],t);
}
}
return f[k][x1][y1][x2][y2];
}
int main()
{
int x1,y1,x2,y2,n;
scanf("%d",&n);
memset(f,-,sizeof(f));
for(int i=;i<=;i++)
for(int j=;j<=;j++)
scanf("%d",&c[i][j]);
for(x1=; x1<=; x1++)
for(x2=x1; x2<=; x2++)
for(y1=; y1<=; y1++)
for(y2=y1; y2<=; y2++)
{
int tmp=add(x1,y1,x2,y2);
f[][x1][y1][x2][y2]=s[x1][y1][x2][y2]=tmp*tmp;
}
dfs(n,,,,);
double X,ans;
X=.*add(,,,);
X=(X/n)*(X/n);
//cout<<f[n][1][1][8][8]<<endl;
ans=sqrt(1.0*f[n][][][][]/n-X);
printf("%.3f\n",ans);
return ;
}
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#define min(a,b) a<b?a:b
#define INF 0x3f3f3f3f
#define N 20
using namespace std;
int dp[N][][][][],s[][][][],c[][];
int add(int x1,int y1,int x2,int y2)
{
int ans=,x,y;
for(x=x1; x<=x2; x++)
for(y=y1; y<=y2; y++)
ans+=c[x][y];
coutMMans;
return ans;
}
int dfs(int k,int x1,int y1,int x2,int y2)
{
if(dp[k][x1][y1][x2][y2]!=-)
return dp[k][x1][y1][x2][y2];
int x,y,t1,t2,t;
dp[k][x1][y1][x2][y2]=INF;
if(x2>x1) //至少有两行才能横着切
{
//1.选上面:dp[k][x1][y1][x2][y2]=s[x1][y1][x][y2]+dp[k-1][x+1][y1][x2][y2];
//2.选下面:dp[k][x1][y1][x2][y2]=s[x+1][y1][x2][y2]+dp[k-1][x1][y1][x][y2];
for(x=x1; x<x2; x++)
{
t1=dfs(k-,x+,y1,x2,y2); //取上面那么递归计算下面
t2=dfs(k-,x1,y1,x,y2); //去下面那么递归计算上面
t=min(t1+s[x1][y1][x][y2] , t2+s[x+][y1][x2][y2]);
dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],t);
}
}
if(y2>y1) //至少有两列才能竖着切
{
//1.选左边:dp[k][x1][y1][x2][y2]=s[x1][y1][x2][y]+dp[k-1][x1][y+1][x2][y2];
//2.选右边:dp[k][x1][y1][x2][y2]=s[x1][y+1][x2][y2]+dp[k-1][x1][y1][x2][y]; for(y=y1; y<y2; y++)
{
t1=dfs(k-,x1,y+,x2,y2); //选左边那么递归计算右边
t2=dfs(k-,x1,y1,x2,y); //选右边那么递归计算左边
t=min(t1+s[x1][y1][x2][y] , t2+s[x1][y+][x2][y2]);
dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],t);
}
} return dp[k][x1][y1][x2][y2];
}
int main()
{
int x1,x2,y1,y2,x,y,n;
scanf("%d",&n);
for(int i=; i<=; i++)
for(int j=; j<=; j++)
scanf("%d",&c[i][j]);
memset(dp,-,sizeof(dp));
for(x1=; x1<=; x1++)
for(x2=x1; x2<=; x2++)
for(y1=; y1<=; y1++)
for(y2=y1; y2<=; y2++)
{
int tmp=add(x1,y1,x2,y2);
dp[][x1][y1][x2][y2]=s[x1][y1][x2][y2]=tmp*tmp;
}
dfs(n,,,,);
double X,ans;
X=.*add(,,,);
X=(X/n)*(X/n);
cout<<X<<endl;
ans=sqrt(1.0*dp[n][][][][]/n-X);
printf("%.3f\n",ans);
return ;
}
1   1   1   1   1   1   1   3
1   1   1   1   1   1   1   1
1   1   1   1   1   1   1   1
1   1   1   1   1   1   1   1
1   1   1   1   1   1   1   1
1   1   1   1   1   1   1   1
1   1   1   1   1   1   1   0
1   1   1   1   1   1   0   3
 
状态的描述:
1.矩形区域,采用Excel的方法
左上角(x1,y1):右下角(x2,y2)
2.状态:
f(i,x1,y1,x2,y2)表示
把(x1,y1):(x2,y2)分割成i块的最小segma((x-x)^2)。
 
对任意的矩形区域,i=1时的f值可以直接求得。
 
 
3.状态转移:f(i,x1,y1,x2,y2)
(1)枚举x1<=x<x2,横向分割成上下两个矩形
(x1,y1):(x,y2) (x+1,y1):(x2,y2)
把(x1,y1):(x,y2)分割成(i-1)矩形:f(i-1,x1,y1,x,y2)
(x+1,y1):(x2,y2)作为1个矩形: f(1,x+1,y1,x2,y2)
或者f(1,x1,y1,x,y2)+f(i-1,x+1,y1,x2,y2)
(2)同理,枚举y1<=y<y2,纵向分割成左右两个矩形
(x1,y1):(x2,y) (x1,y+1):(x2,y2)
f(i-1,x1,y1,x2,y)+f(1,x1,y+1,x2,y2)
f(1,x1,y1,x2,y)+f(i-1,x1,y+1,X2,Y2)
 

NOI 193棋盘分割.cpp的更多相关文章

  1. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

  2. poj1191 棋盘分割【区间DP】【记忆化搜索】

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16263   Accepted: 5812 Description ...

  3. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  4. [NOI1999] 棋盘分割(推式子+dp)

    http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 156 ...

  5. POJ1991 NOI1999棋盘分割

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15581   Accepted: 5534 Description ...

  6. poj 1191 棋盘分割 动态规划

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted: 4032 Description ...

  7. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  8. Qt之VLFeat SLIC超像素分割(Cpp版)

    源地址:http://yongyuan.name/blog/vlfeat-slic-with-qt.html 近段时间学了点Qt,恰好前段时间用借助VLfeat以及OpenCV捣鼓了SLIC超像素分割 ...

  9. POJ 1191棋盘分割问题

    棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...

随机推荐

  1. 1.AJAX简介

    没有AJAX会怎么样?普通的ASP.Net每次执行服务端方法的时候都要刷新当前页面,比如实现显示服务器时间.每次都要刷新页面的坏处:页面刷新打断用户操作.速度慢.增加服务器的流量压力.如果没有AJAX ...

  2. Volatile vs. Interlocked vs. lock

    今天在stackoverflow上看到一个关于Volatile, Interlock, Lock的问题,发现回答的特别好,所以就想到把它翻译一下, 希望给那些对它们有疑惑的人提供点帮助 :假设有一个类 ...

  3. 网络流(最大密集度子图,分数规划):UvaLive 3709 Hard Life

    John is a Chief Executive Officer at a privately owned medium size company. The owner of the company ...

  4. datagridview,textbox,combobox的数据绑定,数据赋值,picturebox的用法

    一:datagridview数据绑定 二:textbox的数据绑定(datetimepicker) 总结: 最好还是写成双向绑定那种,不要再写出发事件了,只要在给textbox赋值就能重新绑定了,不然 ...

  5. C#调用webservers实现天气预报

    一:截图 二:实现步骤 1.引入Web服务.在VS中项目上右击→添加服务引用. 2.在弹出的添加服务引用窗口,录入web服务地址和引用后的命名空间. 三:源代码 using System; using ...

  6. iOS __block用法

    没有__block qualifier的primitive c types会直接在创建block的时候被capture到block里.有__block qualifier的话,会在调用block的时候 ...

  7. C - How Many Tables - HDU-1213

    某个人举办生日宴会邀请了很多人来参加,不过呢,这些人有个毛病他们只会与熟悉人的坐在一起,当然他们也信奉朋友的朋友也是朋友这一法则,所以问最少需要多少张桌子...... 好吧我承认这才是裸并查集.... ...

  8. java mysql模板

    Java mysql的模版,很优雅.同时也兼顾了性能PreparedStatement和安全性(防SQL注入)两方面.对于比较简单的数据库操作基本满足要求. package dao; import j ...

  9. maven profile实现多环境打包

    快速解决: 项目目录 1.pom文件中添加profile <profiles> <profile> <!-- 本地开发环境 --> <id>dev< ...

  10. Java同步工具类总结

    先谈谈闭锁和栅栏的区别: 1.关键区别在于,所有线程必须同时到达栅栏位置,才能继续执行. 2.闭锁用于等待某一个事件的发生,举例:CountDownLatch中await方法等待计数器为零时,所有事件 ...