SPOJ DISQUERY LCA + 倍增
裸题,如此之水…
Code:
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 4;
const int logn = 25;
int f[logn][maxn], head[maxn<<1], to[maxn<<1], nex[maxn<<1], val[maxn<<1], cnt,n,m, F[logn][maxn], G[logn][maxn], dep[maxn];
int minv,maxv;
inline void add_edge(int u,int v,int c)
{
nex[++cnt] = head[u], head[u] = cnt, to[cnt] = v,val[cnt] = c;
}
void dfs(int u,int fa,int c,int cur)
{
f[0][u] = fa, F[0][u] = G[0][u] = c, dep[u] = cur;
for(int v = head[u];v;v = nex[v])
if(to[v] != fa)dfs(to[v],u,val[v],cur + 1);
}
inline void solve(int a,int b)
{
if(dep[a] > dep[b]) swap(a,b);
minv = 50000000, maxv = 0;
if(dep[b] != dep[a])
{
for(int i = 22;i >= 0;--i)
if(dep[f[i][b]] >= dep[a])
{
minv = min(minv, F[i][b]);
maxv = max(maxv, G[i][b]);
b = f[i][b];
}
}
if(a == b) return;
for(int i = 22;i >= 0;--i)
{
if(f[i][a] != f[i][b])
{
minv = min(minv, min(F[i][a], F[i][b]));
maxv = max(maxv, max(G[i][a], G[i][b]));
a = f[i][a], b = f[i][b];
}
}
minv = min(minv, min(F[0][b], F[0][a]));
maxv = max(maxv, max(G[0][b], G[0][a]));
}
int main()
{
freopen("r.in","r",stdin);
freopen("r.out","w",stdout);
scanf("%d",&n);
for(int i = 1;i < n;++i)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,c);
add_edge(b,a,c);
}
dfs(1,0,0,1);
for(int i = 1; i < logn;++i)
{
for(int j = 1;j <= n;++j)
{
f[i][j] = f[i-1][f[i-1][j]];
F[i][j] = min(F[i-1][j], F[i-1][f[i-1][j]]);
G[i][j] = max(G[i-1][j], G[i-1][f[i-1][j]]);
}
}
scanf("%d",&m);
for(int i = 1;i <= m;++i)
{
int a,b;
scanf("%d%d",&a,&b);
if(a != b)
{
solve(a,b);
printf("%d %d\n",minv,maxv);
}
else printf("0 0\n");
}
fclose(stdin);
fclose(stdout);
return 0;
}
SPOJ DISQUERY LCA + 倍增的更多相关文章
- SPOJ QTREE2 (LCA - 倍增 在线)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- 【codevs2370】小机房的树 LCA 倍增
2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...
- LCA倍增算法
LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...
- 洛谷 3379 最近公共祖先(LCA 倍增)
洛谷 3379 最近公共祖先(LCA 倍增) 题意分析 裸的板子题,但是注意这题n上限50w,我用的边表,所以要开到100w才能过,一开始re了两发,发现这个问题了. 代码总览 #include &l ...
- CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先)
CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先) 题意分析 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天, ...
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- LCA(倍增在线算法) codevs 2370 小机房的树
codevs 2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...
- LCA(最近公共祖先)——LCA倍增法
一.前人种树 博客:最近公共祖先 LCA 倍增法 博客:浅谈倍增法求LCA 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 代码: const int MAXN ...
随机推荐
- mysql 基础教程
创建数据库: CREATE DATABASE --DATABASE 或者 SCHEMA数据库集合 IF NOT EXISTS db_name CHARACTER SET utf8 COLLATE ut ...
- CodeForces 396C On Changing Tree
On Changing Tree Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForces ...
- 【ACM】hdu_zs2_1007_Problem G _201308031028
Problem G Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)Total Subm ...
- iOS开发——远程消息推送的实现
在我们使用App的过程中.总是会收到非常多的消息推送.今天我们就要来实现这个功能.首先消息推送分为本地消息推送和远程消息推送.而当中又以远程消息最为经常使用. 可是在推送远程消息之前.有两个前提条件. ...
- Python面向切面编程-语法层面和functools模块
1,Python语法层面对面向切面编程的支持(方法名装饰后改变为log) __author__ = 'Administrator' import time def log(func): def wra ...
- Chrome改动浏览器User Agent
对浏览器快捷方式右键->改动目标项为 C:\Users\LJ\AppData\Local\Google\Chrome\Application\chrome.exe --user-agent=&q ...
- MySQL数据库管理(二)单机环境下MySQL Cluster的安装
上文<MySQL数据库管理(一)MySQL Cluster集群简单介绍>对MySQL Cluster集群做了简要介绍.本文将教大家一步步搭建单机环境下的MySQL数据库集群. 一.单机环境 ...
- Android开发策略:缓存
1.使用缓存策略时,优先考虑使用sdcard(需先推断有无sd卡及其剩余空间是否足够,够的话就开辟一定空间如10M): 2.获取图片时.先从sdcard上找,有的话使用该图片并更新图片最后被使用的时间 ...
- word2vec (一) 简介与训练过程概要
摘自:http://blog.csdn.net/thriving_fcl/article/details/51404655 词的向量化与word2vec简介 word2vec最初是Tomas Miko ...
- Scrapy中的核心工作流程以及POST请求
五大核心组件工作流程 post请求发送 递归爬取 五大核心组件工作流程 引擎(Scrapy)用来处理整个系统的数据流处理, 触发事务(框架核心) 调度器(Scheduler)用来接受引擎发过来的请求, ...