\(\text{Problem}\)

小H是个善于思考的学生,她正在思考一个有关序列的问题。

她的面前浮现出了一个长度为 \(n\) 的序列 \({ai}\),她想找出两个非空的集合 \(S、T\)。

这两个集合要满足以下的条件:

两个集合中的元素都为整数,且都在 \([1, n]\) 里,即 \(Si,Ti ∈ [1, n]\)。

对于集合 \(S\) 中任意一个元素 \(x\),集合 \(T\) 中任意一个元素 \(y\),满足 \(x < y\)。

对于大小分别为 \(p, q\) 的集合 \(S\) 与 \(T\),满足 \(\text{a[s1] xor a[s2] xor a[s3] ... xor a[sp] = a[t1] and a[t2] and a[t3] ... and a[tq]}\).

小H想知道一共有多少对这样的集合 \((S,T)\),你能帮助她吗?

\(\text{Solution}\)

显然 \(dp\)

一般想到的是 \(f_{i,j}\) 表示顺着做到 \(i\) 位异或值为 \(j\) 的方案数,\(g_{i,j}\) 则是倒着 \(and\) 的方案数

那么枚举临界点计算即可

但是由于正解要压位高精,占据空间,是得分着做很悬

于是考虑一个神奇的 \(dp\)

注意它的 \(j\) 表示倒着做 \(and\) 完后继续那这个值 \(xor\) 后的 \(j\)

所以答案是 \(f[p][0][2]\)

\(p\) 表示使用滚动数组最后得到的状态

转移只要考虑当前位选不选即可

\(\text{Code}\)

#include<cstdio>
#include<iostream>
using namespace std; const int N = 1005, P = 1e8;
int n, a[N]; struct node{
int m[40] = {};
}f[2][1024][3]; inline node operator + (node a, node b)
{
node c;
c.m[0] = max(a.m[0], b.m[0]);
for(int i = 1; i <= c.m[0]; i++)
{
c.m[i] += a.m[i] + b.m[i];
c.m[i + 1] += c.m[i] / P, c.m[i] %= P;
}
if (c.m[c.m[0] + 1] > 0) ++c.m[0];
return c;
} int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
f[0][1023][0].m[0] = f[0][1023][0].m[1] = 1;
int p = 0;
for(int i = n; i; i--)
{
for(int j = 0; j < 1024; j++) f[p ^ 1][j][0] = f[p][j][0], f[p ^ 1][j][1] = f[p][j][1],
f[p ^ 1][j][2] = f[p][j][2];
for(int j = 0; j < 1024; j++)
{
f[p ^ 1][j & a[i]][1] = f[p ^ 1][j & a[i]][1] + f[p][j][0] + f[p][j][1];
f[p ^ 1][j ^ a[i]][2] = f[p ^ 1][j ^ a[i]][2] + f[p][j][2] + f[p][j][1];
}
p ^= 1;
}
if (f[p][0][2].m[0] == 0){printf("0\n"); return 0;}
printf("%d", f[p][0][2].m[f[p][0][2].m[0]]);
for(int i = f[p][0][2].m[0] - 1; i; i--) printf("%08d", f[p][0][2].m[i]);
}

JZOJ 3889的更多相关文章

  1. (jzoj snow的追寻)线段树维护树的直径

    jzoj snow的追寻 DFS序上搞 合并暴力和,记录最长链和当前最远点,距离跑LCA # include <stdio.h> # include <stdlib.h> # ...

  2. [jzoj]3506.【NOIP2013模拟11.4A组】善良的精灵(fairy)(深度优先生成树)

    Link https://jzoj.net/senior/#main/show/3506 Description 从前有一个善良的精灵. 一天,一个年轻人B找到她并请他预言他的未来.这个精灵透过他的水 ...

  3. [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)

    Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...

  4. [jzoj]5478.【NOIP2017提高组正式赛】列队

    Link https://jzoj.net/senior/#main/show/5478 Description Sylvia 是一个热爱学习的女孩子.       前段时间,Sylvia 参加了学校 ...

  5. [jzoj]1115.【HNOI2008】GT考试

    Link https://jzoj.net/senior/#main/show/1115 Description 申准备报名参加GT考试,准考证号为n位数X1X2X3...Xn-1Xn(0<=X ...

  6. [jzoj]2538.【NOIP2009TG】Hankson 的趣味题

    Link https://jzoj.net/senior/#main/show/2538 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫H ...

  7. [jzoj]4216.【NOIP2015模拟9.12】平方和

    Link https://jzoj.net/senior/#main/show/4216 Description 给出一个N个整数构成的序列,有M次操作,每次操作有一下三种: ①Insert Y X, ...

  8. [jzoj]2938.【NOIP2012模拟8.9】分割田地

    Link https://jzoj.net/senior/#main/show/2938 Description 地主某君有一块由2×n个栅格组成的土地,有k个儿子,现在地主快要终老了,要把这些土地分 ...

  9. [jzoj]2505.【NOIP2011模拟7.29】藤原妹红

    Link https://jzoj.net/senior/#main/show/2505 Description 在幻想乡,藤原妹红是拥有不老不死能力的人类.虽然不喜欢与人们交流,妹红仍然保护着误入迷 ...

  10. [jzoj]3875.【NOIP2014八校联考第4场第2试10.20】星球联盟(alliance)

    Link https://jzoj.net/senior/#main/show/3875 Problem 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流. ...

随机推荐

  1. 第五章:matplotlib水印和桑基图

    1.Matplotlib水印 1 import matplotlib.pyplot as plt 2 import numpy as np 3 4 x = np.linspace(0.0,10,40) ...

  2. .NET 6 实现滑动验证码(四)、扩展类

    为了能够通过配置文件(appsettings.json)或通过代码进行背景图片与模板进行配置.可自定义资源类型.自定义验证规则,本节创建一些扩展类,用来实现这些功能. 上一节内容:NET 6 实现滑动 ...

  3. form表单里的button 等元素不能使用margin: 0 auto;

    记得把form和button都设为display:block; 就能用margin: 0 auto;水平居中了

  4. ATM+购物车(思路流程)

    ATM +购物车(思路流程) 启动文件 首先,创建一个start.py作为整个项目启动的启动文件 然后导入os和sys模块,从core中导入src,也就是展示给用户看的 在src.py用户视图层中,先 ...

  5. 如何取消磁盘的BitLocker加密

    步骤1:打开开始[win]菜单,点击齿轮图标,打开[设置] 步骤2:在Windows设置视窗中点击[更新和安全] 步骤3:点击左侧[设备加密],点击视窗右侧[关闭] 步骤4:将提示是否需要关闭设备加密 ...

  6. 如何优化大场景实时渲染?HMS Core 3D Engine这么做

    在先前举办的华为开发者大会2022(HDC)上,华为通过3D数字溪村展示了自有3D引擎"HMS Core 3D Engine"(以下简称3D Engine)的强大能力.作为一款高性 ...

  7. Windows下jdk安装与卸载-超详细的图文教程

    jdk安装 下载jdk 由于现在主流就是jdk1.8,所以这里就下载jdk1.8进行演示.官方下载地址:https://www.oracle.com/java/technologies/downloa ...

  8. [能源化工] TE田纳西-伊斯曼过程数据集

    TE田纳西-伊斯曼过程数据集简介 TE数据集是现在故障诊断中的应用较多的一种数据集.主要介绍论文上都有. 具体介绍见:http://depts.washington.edu/control/LARRY ...

  9. [R语言] R语言PCA分析教程 Principal Component Methods in R

    R语言PCA分析教程 Principal Component Methods in R(代码下载) 主成分分析Principal Component Methods(PCA)允许我们总结和可视化包含由 ...

  10. P8796 [蓝桥杯 2022 国 AC] 替换字符

    题面 给定一个仅含小写英文字母的字符串 \(s\) 和 \(m\) 次操作,每次操作选择一个区间 \([l_i,r_i]\) 将 \(s\) 的该区间中的所有字母 \(x_i\) 全部替换成字母 \( ...