Java操作Hadoop、Map、Reduce合成
原始数据:

Map阶段
1.每次读一行数据,
2.拆分每行数据,
3.每个单词碰到一次写个1
<0, "hello tom">
<10, "hello jerry">
<22, "hello kitty">
<34, "hello world">
<46, "hello tom">
点击查看代码
/**
* @ClassName:WordCountReduce
* @Description:TODO
* @author:Li Wei Ning
* @Date:2022/4/28 10:55
*/
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* Text 数据类型:字符串类型 String
* IntWritable reduce阶段的输入类型 int
* Text reduce阶段的输出数据类型 String类型
* IntWritable 输出词频个数 Int型
* @author 暖阳
*/
public class WordCountReduce extends Reducer<Text, IntWritable,Text,IntWritable> {
/**
* key 输入的 键
* value 输入的 值
* context 上下文对象,用于输出键值对
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context){
try {
int sum=0;
for(IntWritable val:values){
sum+=val.get();
}
context.write(key,new IntWritable(sum));
}catch (Exception e){
e.printStackTrace();
}finally {
System.out.println("成功!!!");
}
}
}
reduce阶段
1.把单词对应的那些1
2遍历
3求和
<hello, {1,1,1,1,1}>
<jerry, {1}>
<kitty, {1}>
<tom, {1,1}>
<world, {1}>
点击查看代码
/**
* @ClassName:WordCountReduce
* @Description:TODO
* @author:Li Wei Ning
* @Date:2022/4/28 10:55
*/
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* Text 数据类型:字符串类型 String
* IntWritable reduce阶段的输入类型 int
* Text reduce阶段的输出数据类型 String类型
* IntWritable 输出词频个数 Int型
* @author 暖阳
*/
public class WordCountReduce extends Reducer<Text, IntWritable,Text,IntWritable> {
/**
* key 输入的 键
* value 输入的 值
* context 上下文对象,用于输出键值对
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context){
try {
int sum=0;
for(IntWritable val:values){
sum+=val.get();
}
context.write(key,new IntWritable(sum));
}catch (Exception e){
e.printStackTrace();
}finally {
System.out.println("成功!!!");
}
}
}
整合合并
点击查看代码
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* @ClassName:WordCount
* @Description:TODO
* @author:Li Wei Ning
* @Date:2022/4/28 10:54
*/
public class WordCountTest {
public static void main(String[] args) {
try {
/*定义配置*/
Configuration config = new Configuration();
/* config.set("fs.defaultFS", "hdfs://192.168.47.128:9000");*/
/*定义一个工作任务,用于套接map和reduce两个阶段*/
Job job = Job.getInstance(config);
/* 定义工作任务用map*/
job.setMapperClass(WordCountMap.class);
/*定义map的输出key*/
job.setMapOutputKeyClass(Text.class);
/*定义map的输出value*/
job.setMapOutputValueClass(IntWritable.class);
/*定义map的文件路径*/
Path srcPath = new Path("C:/Users/暖阳/Desktop/123.txt");
/*定义map的输入文件*/
FileInputFormat.setInputPaths(job,srcPath);
/* 定义reduce用哪个类*/
job.setReducerClass(WordCountReduce.class);
/*指定reduce的输出key*/
job.setOutputKeyClass(Text.class);
/*指定reduce的输出value*/
job.setOutputValueClass(IntWritable.class);
/* 定义主类*/
job.setJarByClass(WordCountTest.class);
/*定义reduce的输出文件路径*/
Path outPath = new Path("C:/Users/暖阳/Desktop/WordCountTest");
/*输出最终结果文件路径*/
FileOutputFormat.setOutputPath(job, outPath);
/*提交job并关闭程序*/
System.exit(job.waitForCompletion(true) ? 0 : 1);
}catch (Exception e){
e.printStackTrace();
}finally {
System.out.println("最终的");
}
}
}
输出结果
hello 5
jerry 1
kitty 1
tom 2
world 1
Java操作Hadoop、Map、Reduce合成的更多相关文章
- Hadoop Map/Reduce教程
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...
- 一步一步跟我学习hadoop(5)----hadoop Map/Reduce教程(2)
Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解M ...
- Hadoop Map/Reduce
Hadoop Map/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集.一个Map/Reduce ...
- java 写一个 map reduce 矩阵相乘的案例
1.写一个工具类用来生成 map reduce 实验 所需 input 文件 下面两个是原始文件 matrix1.txt 1 2 -2 0 3 3 4 -3 -2 0 2 3 5 3 -1 2 -4 ...
- Hadoop Map/Reduce的工作流
问题描述 我们的数据分析平台是单一的Map/Reduce过程,由于半年来不断地增加需求,导致了问题已经不是那么地简单,特别是在Reduce阶段,一些大对象会常驻内存.因此越来越顶不住压力了,当前内存问 ...
- Java操作Hadoop集群
mavenhdfsMapReduce 1. 配置maven环境 2. 创建maven项目 2.1 pom.xml 依赖 2.2 单元测试 3. hdfs文件操作 3.1 文件上传和下载 3.2 RPC ...
- Hadoop学习笔记(三):java操作Hadoop
1. 启动hadoop服务. 2. hadoop默认将数据存储带/tmp目录下,如下图: 由于/tmp是linux的临时目录,linux会不定时的对该目录进行清除,因此hadoop可能就会出现意外情况 ...
- Hadoop Map/Reduce 示例程序WordCount
#进入hadoop安装目录 cd /usr/local/hadoop #创建示例文件:input #在里面输入以下内容: #Hello world, Bye world! vim input #在hd ...
- C#、JAVA操作Hadoop(HDFS、Map/Reduce)真实过程概述。组件、源码下载。无法解决:Response status code does not indicate success: 500。
一.Hadoop环境配置概述 三台虚拟机,操作系统为:Ubuntu 16.04. Hadoop版本:2.7.2 NameNode:192.168.72.132 DataNode:192.168.72. ...
随机推荐
- 攻防世界杂项MISCall
MISCall 下载下来是一个附件但是不清楚他是个什么东西我先拉入kali看看 发现是一个tar包不过这个包我们需要使用以下的指令来解压 tar -xjvf d02f31b893164d56b7a8e ...
- 【freertos】007-系统节拍和系统延时管理实现细节
前言 本章节的时钟系统节拍主要分析FreeRTOS内核相关及北向接口层,南向接口层不分析. 本章节的系统延时主要分析任务系统延时实现. 原文:李柱明博客:https://www.cnblogs.com ...
- c的free 为什么不需要知道大小
malloc malloc函数在运行时分配内存.它需要以字节为单位的大小并在内存中分配那么多空间.这意味着malloc(50)将在内存中分配50个字节.它返回一个void指针 calloc 与mall ...
- MOS管防反接电路设计
转自嵌入式单片机之家公众号 问题的提出 电源反接,会给电路造成损坏,不过,电源反接是不可避免的.所以,我们就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的 01二极管防反接 通常情况下直 ...
- JS:数组中push对象,覆盖问题
发现将对象push进数组,后面的值会覆盖前面的值,最后输出的都是最后一次的值.其实这一切都是引用数据类型惹的祸.如果你也有类似问题,可以继续看下去哦.下面代码模拟:将json对象的每个键值对,单独搞成 ...
- Emscripten教程之代码可移植性与限制(一)
Emscripten教程之代码可移植性与限制(一) 翻译:云荒杯倾本文是Emscripten-WebAssembly专栏系列文章之一,更多文章请查看专栏.也可以去作者的博客阅读文章.欢迎加入Wasm和 ...
- x64 番外篇——保护模式相关
写在前面 此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...
- IP和静态路由技术概述
1. IP地址的构成 IP地址:32比特的二进制数字,通常采用点分十进制方式表示. IP地址由两部分组成. 网络号码字段(Net-id)用于区分不同的网络.网络号码字段的前几位成为类别字段(又称为类别 ...
- 让我们写一个 Win32 文本编辑器吧 - 2. 计划和显示
让我们写一个 Win32 文本编辑器吧 - 2. 计划和显示 如果你已经阅读了简介,相信你已经对我们接下来要做的事情有所了解. 本文,将会把简介中基础程序修改为一个窗体应用程序.并对编辑器接下来的编辑 ...
- Spring-注入方式(基于xml方式)
1.基于xml方式创建对象 <!--配置User类对象的创建 --> <bean id="user" class="com.at.spring5.Use ...