吴裕雄 PYTHON 神经网络——TENSORFLOW 正则化
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np data = []
label = []
np.random.seed(0) # 以原点为圆心,半径为1的圆把散点划分成红蓝两部分,并加入随机噪音。
for i in range(150):
x1 = np.random.uniform(-1,1)
x2 = np.random.uniform(0,2)
if x1**2 + x2**2 <= 1:
data.append([np.random.normal(x1, 0.1),np.random.normal(x2,0.1)])
label.append(0)
else:
data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)])
label.append(1) data = np.hstack(data).reshape(-1,2)
label = np.hstack(label).reshape(-1, 1)
plt.scatter(data[:,0], data[:,1], c=label,cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
plt.show()

def get_weight(shape, lambda1):
var = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(lambda1)(var))
return var
x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))
sample_size = len(data) # 每层节点的个数
layer_dimension = [2,10,5,3,1] n_layers = len(layer_dimension) cur_layer = x
in_dimension = layer_dimension[0] # 循环生成网络结构
for i in range(1, n_layers):
out_dimension = layer_dimension[i]
weight = get_weight([in_dimension, out_dimension], 0.003)
bias = tf.Variable(tf.constant(0.1, shape=[out_dimension]))
cur_layer = tf.nn.elu(tf.matmul(cur_layer, weight) + bias)
in_dimension = layer_dimension[i] y= cur_layer # 损失函数的定义。
mse_loss = tf.reduce_sum(tf.pow(y_ - y, 2)) / sample_size
tf.add_to_collection('losses', mse_loss)
loss = tf.add_n(tf.get_collection('losses'))
# 定义训练的目标函数mse_loss,训练次数及训练模型
train_op = tf.train.AdamOptimizer(0.001).minimize(mse_loss)
TRAINING_STEPS = 40000 with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
sess.run(train_op, feed_dict={x: data, y_: label})
if i % 2000 == 0:
print("After %d steps, mse_loss: %f" % (i,sess.run(mse_loss, feed_dict={x: data, y_: label}))) # 画出训练后的分割曲线
xx, yy = np.mgrid[-1.2:1.2:.01, -0.2:2.2:.01]
grid = np.c_[xx.ravel(), yy.ravel()]
probs = sess.run(y, feed_dict={x:grid})
probs = probs.reshape(xx.shape) plt.scatter(data[:,0], data[:,1], c=label,
cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
plt.contour(xx, yy, probs, levels=[.5], cmap="Greys", vmin=0, vmax=.1)
plt.show()

# 定义训练的目标函数loss,训练次数及训练模型
train_op = tf.train.AdamOptimizer(0.001).minimize(loss)
TRAINING_STEPS = 40000 with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
sess.run(train_op, feed_dict={x: data, y_: label})
if i % 2000 == 0:
print("After %d steps, loss: %f" % (i, sess.run(loss, feed_dict={x: data, y_: label}))) # 画出训练后的分割曲线
xx, yy = np.mgrid[-1:1:.01, 0:2:.01]
grid = np.c_[xx.ravel(), yy.ravel()]
probs = sess.run(y, feed_dict={x:grid})
probs = probs.reshape(xx.shape) plt.scatter(data[:,0], data[:,1], c=label,
cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
plt.contour(xx, yy, probs, levels=[.5], cmap="Greys", vmin=0, vmax=.1)
plt.show()

吴裕雄 PYTHON 神经网络——TENSORFLOW 正则化的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
- 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...
- 吴裕雄 python 神经网络——TensorFlow pb文件保存方法
import tensorflow as tf from tensorflow.python.framework import graph_util v1 = tf.Variable(tf.const ...
- 吴裕雄 python 神经网络——TensorFlow 数据集高层操作
import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output ...
随机推荐
- 题解【SP1716】GSS3 - Can you answer these queries III
题目描述 You are given a sequence \(A\) of \(N (N <= 50000)\) integers between \(-10000\) and \(10000 ...
- winform学习(7)Label控件、Button控件、TextBox控件
Label控件是System.Windows.Forms.Label 类提供的控件. 作用:主要用来提供其他控件的描述文字,例如:登录窗体上的用户名.密码(输入框前面的字) Button控件是Syst ...
- 每天进步一点点------Allegro手工建立电路板
手工建立电路板步骤(以某个四层板为例): (1)file---new---board/board wizard来建立.brd电路板文件.设置名称和保存路径后,要设置绘图区域的大小,setup---dr ...
- python中字符串内置方法
字符串类型 作用:定义姓名.性别等 定义方式: s='lzs' #\n换行 \t缩进4个空格 \r回退上一个打印结果,覆盖上一个打印结果 加上一个\让后面的\变得无意义 内置方法: (优先掌握) 1. ...
- Adobe PS
1. ctrl + Tab 切换视图窗口 2.shift 拖拽图片,将 2 张图片放在一起 3.切换显示方式 /全屏/带有工具栏 快捷键:F 4. 缩小/放大工具 快捷键: alt + 鼠标滑轮 5 ...
- 染色板QPlette
QPalette::Window 背景颜色 QPalette::WindowText 文本颜色 QPalette::Background 同QPalette::Window QPalette::For ...
- CentOS: 网络连接故障排除
yum不能正常动作,惯性认为是需要替换BaseURL,结果后来才发现是Gateway不知什么时候被错误设定了,memo如下. 现象表现于yum不能正常动作,确认ping的操作,发现是不能解析DNS [ ...
- vue 实现 多个 数字滚动增加动效
参考网上其他同学写的 具体出处忘了,不然一定贴上,有问题请联系. 图一是具体js代码:二是设置定时器:三是dom节点需要写ref numberGrow (ele) { this.summaryData ...
- Azure IoT Hub 十分钟入门系列 (3)- 使用消息路由将原始设备数据记录存档
本文主要分享一个案例: 10分钟使用消息路由将原始设备数据记录存档 B站视频讲解:https://www.bilibili.com/video/av90223893/ 本文主要有如下内容: 1.理解什 ...
- web应用程序上传文件 超过了最大请求长度
具体问题如下图 具体问题描述:在web应用程序中,上传了200M的文件,出现了如上图的问题,上传较小文件的时候,没有任何的问题.但是,测试的能力,不容小觑,真真的会测试的很全面.测试到了这个问题,好吧 ...