hihocoder #1052 基因工程
$\DeclareMathOperator{\rev}{rev}$
传送门:基因工程
这道题拖了好久,一直没有清晰的思路。
当然,$k\le\frac{n}{2}$ 时,比较简单。下面我着重讲一下当 $k>\frac{n}{2}$ ,即前 $k$ 个字符与后 $k$ 个字符有重叠时,如何思考这个问题。
为了便于分析,我们把题目要求形式化成如下的数学表示
假设修改后的字符串为 $S$ ,字符串长度为 $n$ ,则 $S$ 满足
\[S_i = S_{i+n-k} \qquad 1 \le i \le k \]
即“$S$是以$n-k$为周期的字符串”。
这样讲对吗?我们回忆一下数学上周期函数的概念,不难发现这个说法不确切,一个有周期性的字符串是无限长的。
为了消除这种数学上的不严格,我们换一种说法
满足
\[S_i = S_{i+n-k} \qquad 1 \le i \le k\]
且长为$n$的字符串$S$,必定是某个以 $n-k$ 为周期的无限长字符串 $T$ 的子串。
至此我们找到了一个将问题大大简化了的必要条件,显然这个命题反过来也成立。因而有
对于任意长为 $n$ 的字符串 $S$
$S_i = S_{n-k+i} \qquad 1 \le i \le k, \quad 0 \le k \le n,$
$\iff$ $S$ 是某个以 $n-k$ 为周期的无限长字符串 $T$ 的子串
UPDATE (2019/5/16)
另一道跟周期串有关的字符串构造题,CF1158B The minimal unique substring。
$\mathsf{UPD (2018/12/27)}$
多年以后又遇到一个类似的问题,CF1081H Palindromic Magic,想起这篇旧文。
作者(fjzzq2002)在题解中也定义了周期串,把我所谓「$S$ 是某个以 $t$ 为周期的无限长字符串 $T$ 的子串」径称为「$S$ 以 $t$ 为周期($S$ has a period of length $t$)」。
现把题解中的一些术语和定义摘录在此。
问题转化为:求将一个字符串 $S$ 转化为某个以 $n-k$ 为周期的无限长字符串 $T$ 的子串,所需的最少更改次数。
这个问题思考起来可比原问题清楚多了,而且至此我们已经把开头说到的两种情况统一起来了。
可以通过频数统计求解:
分别统计
\[1, 1+n-k, 1+2(n-k), \dots \]
\[2, 2+n-k, \dots\]
\[\cdots\]
\[n-k, n-k+n-k, \dots\]
上A, G, C, T出现的频数,将其改成频数最大的那个字符,这样所需的总改动次数就是答案。
P.S. 这篇随笔是我看了李舜阳的 hihoCoder #1052 基因工程 后写的。看他画的图还是不能完全把握这个问题,我觉得从数学上将问题形式化,寻找能够简化问题的必要条件,对我们分析问题极有帮助,也是一种科学的思维方式。我们即使不画图也能透彻地分析这个问题,相反只看
李舜阳的图而不借助形式化的推导仍是糊里糊涂。
#include<bits/stdc++.h>
using namespace std;
const int MAX_N=1e3+;
char s[MAX_N];
const char* item="ACGT";
int main(){
//freopen("in", "r", stdin);
int T, K, N, rep, ans, maxi, cnt[]; //A, C, G, T
scanf("%d", &T);
while(T--){
scanf("%s%d", s+, &K);
N=strlen(s+);
rep=N-K;
ans=;
for(int i=; i<=rep; i++){
memset(cnt, , sizeof(cnt));
for(int j=i; j<=N; j+=rep){
for(int k=; k<; k++){
if(s[j]==item[k]){
cnt[k]++;
break;
}
}
}
maxi=;
for(int j=; j<; j++){
maxi=max(maxi, cnt[j]);
ans+=cnt[j];
}
ans-=maxi;
}
printf("%d\n", ans);
}
return ;
}
hihocoder #1052 基因工程的更多相关文章
- hihocoder #1052 : 基因工程(字符串处理 + 找规律 )
#1052 : 基因工程 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho正在进行一项基因工程实验.他们要修改一段长度为N的DNA序列,使得这段DNA上最前面 ...
- hihoCoder 1052 基因工程 最详细的解题报告
题目来源:基因工程 解题思路:假设基因序列长度为N,则需要计算基因序列前K个和后K个相同所需要的最少改变次数sum. 假设基因序列为 ATACGTCT (即M=8),K=6:interval=M-K= ...
- HihoCoder#1052:基因工程
HihoCoder#1052:基因工程 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho正在进行一项基因工程实验.他们要修改一段长度为N的DNA序列,使得这段 ...
- 【HIHOCODER 1052 】基因工程(贪心)
链接 问题描述 小Hi和小Ho正在进行一项基因工程实验.他们要修改一段长度为N的DNA序列,使得这段DNA上最前面的K个碱基组成的序列与最后面的K个碱基组成的序列完全一致. 例如对于序列"A ...
- [HIHO1052]基因工程(找规律)
题目链接:http://hihocoder.com/problemset/problem/1052 题意:中文题面,就是修改其中几个字符,使得[0,k-1]和[n-k,n-1]的字符相同. 会发现一个 ...
- AC日记——地鼠游戏 codevs 1052
1052 地鼠游戏 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 王钢是一名学习成绩优异的学生,在平 ...
- codevs 1052 地鼠游戏
1052 地鼠游戏 http://codevs.cn/problem/1052/ 题目描述 Description 王钢是一名学习成绩优异的学生,在平时的学习中,他总能利用一切时间认真高效地学习,他不 ...
- hihocoder -1121-二分图的判定
hihocoder -1121-二分图的判定 1121 : 二分图一•二分图判定 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 大家好,我是小Hi和小Ho的小伙伴Net ...
- Hihocoder 太阁最新面经算法竞赛18
Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...
随机推荐
- ffmpeg在shell循环中只执行一次问题
最近写了一个shell脚本,发现 ffmpeg 命令只执行了一次就停了,最后找到原因: ffmpeg有时会读取标准输入流,导致命令出错,解决办法是在ffmpeg命令之后添加 #xxx ffmpeg x ...
- Orchard创建全局应用
Orchard的本地化管理托管于一个外部服务(Crowdin),这个项目是公开的且欢迎大家做贡献. Orchard支持两种类型的本地: Orchard应用程序以及已安装模块中的文本字符串的本地化(其实 ...
- java swing模仿随机频谱
import java.awt.BorderLayout; import java.awt.Color; import java.awt.Dimension; import java.awt.Grap ...
- oracle游标调试结果显示位置
在SQL窗口输入内容,按F8后,可以在下图看到
- IntelliJ_设置
1.修改背景色.修改字体大小 http://blog.csdn.net/hpf911/article/details/16888797 2.显示行号 搜索Line Number 3.代码结构图 Vie ...
- sql insert into select语句写法-将查询结果直接插入到表中
insert into month_gpcj_info(idStr,zszrmygpsl,xyzrmygpsl,mycje,mycjl,month_date,dataCompiledDate) sel ...
- 【USACO 2.1】Healthy Holsteins
/* TASK: holstein LANG: C++ URL: http://train.usaco.org/usacoprob2?a=SgkbOSkonr2&S=holstein SOLV ...
- 【ACdream 1187】Rational Number Tree(树,递归)
有理数的树,根节点是1/1,左儿子是1/2,右儿子是2/1....求给定的分数是第几个,或者给定n求第n个分数.递归.给定的分数,每次递归,如果分子比较小,就用分母减去分子,并且这是左儿子.反之是右儿 ...
- 77.Android之代码混淆
转载:http://www.jianshu.com/p/7436a1a32891 简介 作为Android开发者,如果你不想开源你的应用,那么在应用发布前,就需要对代码进行混淆处理,从而让我们代码即使 ...
- oninput等表单事件
oninput等表单事件 过去我们常使用keydown和keyup辅助表单元素的处理,这要求处理时,表单元素必须处于激活(聚焦)状态.oninput事件可以实时监听文本框的输入变化. 现代浏览器支 ...