题意

链接

Sol

第一次做在二分图上博弈的题。。感觉思路真是清奇。。

首先将图黑白染色。

对于某个点,若它一定在最大匹配上,那么Bob必胜。因为Bob可以一直沿着匹配边都,Alice只能走非匹配边。到最后一定是Alice不能移动。

否则Alice必胜。这个我不会证,但是又举不出反例来qwq。手玩了几个数据发现Alice总会有一种方法走某个非匹配边干掉Bob。

那么如何找不一定在最大匹配上的点呢?首先求出一个最大匹配,结论是从所有不在最大匹配上的点开始dfs,通过交叉边(目标点的匹配边)走到点都是不一定在最大匹配上的点。(总有一种方案使这个点成为最大匹配)

然后直接匈牙利就行了

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1001, INF = 1e9 + 7, mod = 998244353;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
char s[MAXN][MAXN];
vector<int> v[MAXN * MAXN];
void AE(int x, int y) {
v[x].push_back(y); v[y].push_back(x);
}
int vis[MAXN * MAXN], link[MAXN * MAXN], tag[MAXN * MAXN], times;
int id(int x, int y) {
return (x - 1) * M + y;
}
bool Aug(int x) {
for(auto &to : v[x]) {
if(vis[to] == times) continue;
vis[to] = times;//tag
if(!link[to] || Aug(link[to]))
{link[to] = x; link[x] = to; return 1;}
}
return 0;
}
void dfs(int x) {
tag[x] = 1;
for(auto &to : v[x]) if(!tag[link[to]]) dfs(link[to]);
}
int main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) scanf("%s", s[i] + 1);
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(s[i][j] == '.') {
if(i < N && s[i + 1][j] == '.') AE(id(i, j), id(i + 1, j));
if(j < M && s[i][j + 1] == '.') AE(id(i, j), id(i, j + 1));
}
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(((i + j) & 1) && s[i][j] == '.')
times++, Aug(id(i, j));
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(s[i][j] == '.' && !link[id(i, j)] && !tag[id(i, j)])
dfs(id(i, j));
int ans = 0;
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(tag[id(i, j)]) ans++;
cout << ans << '\n';
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(tag[id(i, j)]) cout << i << ' ' << j << '\n';
return 0;
}

loj#6033. 「雅礼集训 2017 Day2」棋盘游戏(二分图博弈)的更多相关文章

  1. [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]

    题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...

  2. loj#6032. 「雅礼集训 2017 Day2」水箱(并查集 贪心 扫描线)

    题意 链接 Sol 神仙题+神仙做法%%%%%%%% 我再来复述一遍.. 首先按照\(y\)坐标排序,然后维护一个扫描线从低处往高处考虑. 一个连通块的内状态使用两个变量即可维护\(ans\)表示联通 ...

  3. LOJ#6032. 「雅礼集训 2017 Day2」水箱

    传送门 首先可以有一个平方复杂度的 \(DP\) 设 \(f_{i,j}\) 表示前面 \(i\) 个小格,高度为 \(j\) 的最大答案 令 \(h_i\) 表示隔板 \(i\) 的高度 当 \(j ...

  4. loj #6032. 「雅礼集训 2017 Day2」水箱 线段树优化DP转移

    $ \color{#0066ff}{ 题目描述 }$ 给出一个长度为 \(n\) 宽度为 \(1\) ,高度无限的水箱,有 \(n-1\) 个挡板将其分为 \(n\) 个 \(1 - 1\) 的小格, ...

  5. loj#6034 「雅礼集训 2017 Day2」线段游戏

    分析 区间李超树板子题 代码 #include<bits/stdc++.h> using namespace std; #define db double const int inf = ...

  6. [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]

    题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...

  7. LOJ6033「雅礼集训 2017 Day2」棋盘游戏 (博弈论,二分图,匈牙利算法)

    什么神仙思路啊-- 看到棋盘就去想二分图.(smg啊)(其实是校内模拟赛有基本一样的题,只不过直接给了个二分图) 看到二分图就去想最大匹配.(我怎么想偶环的性质去了) (以下内容摘自这里) 这个二分图 ...

  8. 「雅礼集训 2017 Day2」棋盘游戏

    祝各位圣诞后快乐(逃) 题目传送门 分析: 首先棋盘上的路径构成的图是一张二分图 那么对于一个二分图,先求出最大匹配,先手如果走到关键匹配点,只要后手顺着匹配边走,由于不再会出现增广路径,所以走到最后 ...

  9. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

随机推荐

  1. SpringMVC框架二:SpringMVC与MyBatis整合

    下面整合SpringMVC和MyBatis框架,并做一个小案例 创建数据库springmvc,并创建两张表,加入一些数据: 两张表:商品表,用户表 CREATE DATABASE springmvc; ...

  2. oo第二单元的自白

    电梯第一次作业 第一次电梯较为简单,主要目的在于初步接触多线程,可以实现一些简单的操作. 在本次作业中,为了更好的了解多线程,我也阅读了一些代码,并据此仿写完成了第一次作业. 根据生产者和消费者的模式 ...

  3. Python - IPython

    1- IPython简介 HomePage:http://ipython.org/ IPython(interactive Python) provides a rich architecture f ...

  4. [原创]K8mysqlCmd数据库免驱连接工具

    无需机器安装MYSQL驱动,可用于内网渗透(如远控cmd下连接目标内网不可上网机器数据库) 当然目标机可代理出来的话,没必要使用该工具了 因为很多功能SQL语句需要自己打,很多人可能不懂 如果更新2. ...

  5. 使用maven插件构建docker镜像

    为什么要用插件 主要还是自动化的考虑,如果额外使用Dockerfile进行镜像生成,可能会需要自己手动指定jar/war位置,并且打包和生成镜像间不同步,带来很多琐碎的工作. 插件选择 使用比较多的是 ...

  6. supervisor 启动dotnet.core 报“ too many start retries too quickly”

    环境: 操作系统:Centos 7 dotnet core:2.0.0    2.1.3 问题: 在使用supervisor 配置守护进程时,启动dotnet.core程序失败,查看/tmp下supe ...

  7. c# json 序列化如何去掉null值

    要将一个对象序列化,可是如果对象的属性为null的时候,我们想将属性为null的都去掉. 在这里我使用Newtonsoft.Json.dll 记录一下序列化以及反序列化 json字符串转对象 Mode ...

  8. Eclipse打包出错——提示GC overhead limit exceeded

    版权声明:本文为博主原创文章,未经博主允许不得转载. 在Eclipse开发环境中打包发布apk安装包的时候,有时候会出现下面的错误: 原因 在打包的时候,Eclipse占用的内存会增大,当分配给Ecl ...

  9. Kubernetes理论基础

    Kubernetes理论基础 Kubernetes定义 ​ kubernetes是Google开源的容器集群管理系统,2014年6月开源.在Docker技术之上,为容器应用提供资源调度.部署运行.服务 ...

  10. Go基础系列:简单数据类型

    每一个变量都有数据类型,Go中的数据类型有: 简单数据类型:int.float.complex.bool和string 数据结构或组合(composite):struct.array.slice.ma ...