题意

链接

Sol

第一次做在二分图上博弈的题。。感觉思路真是清奇。。

首先将图黑白染色。

对于某个点,若它一定在最大匹配上,那么Bob必胜。因为Bob可以一直沿着匹配边都,Alice只能走非匹配边。到最后一定是Alice不能移动。

否则Alice必胜。这个我不会证,但是又举不出反例来qwq。手玩了几个数据发现Alice总会有一种方法走某个非匹配边干掉Bob。

那么如何找不一定在最大匹配上的点呢?首先求出一个最大匹配,结论是从所有不在最大匹配上的点开始dfs,通过交叉边(目标点的匹配边)走到点都是不一定在最大匹配上的点。(总有一种方案使这个点成为最大匹配)

然后直接匈牙利就行了

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1001, INF = 1e9 + 7, mod = 998244353;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
char s[MAXN][MAXN];
vector<int> v[MAXN * MAXN];
void AE(int x, int y) {
v[x].push_back(y); v[y].push_back(x);
}
int vis[MAXN * MAXN], link[MAXN * MAXN], tag[MAXN * MAXN], times;
int id(int x, int y) {
return (x - 1) * M + y;
}
bool Aug(int x) {
for(auto &to : v[x]) {
if(vis[to] == times) continue;
vis[to] = times;//tag
if(!link[to] || Aug(link[to]))
{link[to] = x; link[x] = to; return 1;}
}
return 0;
}
void dfs(int x) {
tag[x] = 1;
for(auto &to : v[x]) if(!tag[link[to]]) dfs(link[to]);
}
int main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) scanf("%s", s[i] + 1);
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(s[i][j] == '.') {
if(i < N && s[i + 1][j] == '.') AE(id(i, j), id(i + 1, j));
if(j < M && s[i][j + 1] == '.') AE(id(i, j), id(i, j + 1));
}
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(((i + j) & 1) && s[i][j] == '.')
times++, Aug(id(i, j));
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(s[i][j] == '.' && !link[id(i, j)] && !tag[id(i, j)])
dfs(id(i, j));
int ans = 0;
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(tag[id(i, j)]) ans++;
cout << ans << '\n';
for(int i = 1; i <= N; i++)
for(int j = 1; j <= M; j++)
if(tag[id(i, j)]) cout << i << ' ' << j << '\n';
return 0;
}

loj#6033. 「雅礼集训 2017 Day2」棋盘游戏(二分图博弈)的更多相关文章

  1. [LOJ#6033]. 「雅礼集训 2017 Day2」棋盘游戏[二分图博弈、匈牙利算法]

    题意 题目链接 分析 二分图博弈经典模型,首先将棋盘二分图染色. 考虑在某个最大匹配中: 如果存在完美匹配则先手必败,因为先手选定的任何一个起点都在完美匹配中,而后手则只需要走这个点的匹配点,然后先手 ...

  2. loj#6032. 「雅礼集训 2017 Day2」水箱(并查集 贪心 扫描线)

    题意 链接 Sol 神仙题+神仙做法%%%%%%%% 我再来复述一遍.. 首先按照\(y\)坐标排序,然后维护一个扫描线从低处往高处考虑. 一个连通块的内状态使用两个变量即可维护\(ans\)表示联通 ...

  3. LOJ#6032. 「雅礼集训 2017 Day2」水箱

    传送门 首先可以有一个平方复杂度的 \(DP\) 设 \(f_{i,j}\) 表示前面 \(i\) 个小格,高度为 \(j\) 的最大答案 令 \(h_i\) 表示隔板 \(i\) 的高度 当 \(j ...

  4. loj #6032. 「雅礼集训 2017 Day2」水箱 线段树优化DP转移

    $ \color{#0066ff}{ 题目描述 }$ 给出一个长度为 \(n\) 宽度为 \(1\) ,高度无限的水箱,有 \(n-1\) 个挡板将其分为 \(n\) 个 \(1 - 1\) 的小格, ...

  5. loj#6034 「雅礼集训 2017 Day2」线段游戏

    分析 区间李超树板子题 代码 #include<bits/stdc++.h> using namespace std; #define db double const int inf = ...

  6. [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]

    题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...

  7. LOJ6033「雅礼集训 2017 Day2」棋盘游戏 (博弈论,二分图,匈牙利算法)

    什么神仙思路啊-- 看到棋盘就去想二分图.(smg啊)(其实是校内模拟赛有基本一样的题,只不过直接给了个二分图) 看到二分图就去想最大匹配.(我怎么想偶环的性质去了) (以下内容摘自这里) 这个二分图 ...

  8. 「雅礼集训 2017 Day2」棋盘游戏

    祝各位圣诞后快乐(逃) 题目传送门 分析: 首先棋盘上的路径构成的图是一张二分图 那么对于一个二分图,先求出最大匹配,先手如果走到关键匹配点,只要后手顺着匹配边走,由于不再会出现增广路径,所以走到最后 ...

  9. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

随机推荐

  1. Day6:html和css

    Day6:html和css 复习 margin: 0; padding: 0; <!DOCTYPE html> <html lang="en"> <h ...

  2. 【app】Appium日志文件分析

    Appium在和客户端及手机端进行通讯的时候会输出很多日志,可以通过点击主面板的Get Raw Logs得到其原始日志: 现在我们另存到其他路径,并且以notepad工具打开进行查看 Appium日志 ...

  3. Linux的 文件 和 目录 管理

    包括了文件和目录的创建.删除.修改,权限.压缩.搜索.分区.挂载 简单的一些命令: [ pwd ]查看当前所在目录 [ cd .. ]上级目录 [ cd ~ ]当前用户的家目录 [cd -]上次打开目 ...

  4. 两步验证杀手锏:Java 接入 Google 身份验证器实战

    两步验证 大家应该对两步验证都熟悉吧?如苹果有自带的两步验证策略,防止用户账号密码被盗而锁定手机进行敲诈,这种例子屡见不鲜,所以苹果都建议大家开启两步验证的. Google 的身份验证器一般也是用于登 ...

  5. python基础-变量运算符(3)

    一.注释 注释就是对代码的解释和说明.目的是为了让别人和自己很容易看懂.为了让别人一看就知道这段代码是做什么用的.正确的程序注释一般包括序言性注释和功能性注释.序言性注释的主要内容包括模块的接口.数据 ...

  6. Linux 下 Shell 的自动交互

    在编写脚本的时候经常会遇到这种情况,某些程序的命令执行的之后可能会要求用户进行输入,这个时候就需要一些特殊写法来应对这种问题了.这里参考 这篇文章提到可以使用 delimiter 分界符来解决. 也就 ...

  7. csv与xlsx导出

    一.csv与xlsx格式基本介绍       csv即comma seperate values - 逗号分隔值,文件以纯文本形式来存储表格数据,它可以由任意数目的记录组成,记录之间通过某种换行符来分 ...

  8. 对小程序框架WePY的精简总结

    一.注意点 关闭ES6转ES5关闭上传代码时样式自动补全关闭代码压缩上传本地开发选择dist目录,dist目录也用在开发者工具上实时预览和调试WePY框架对应的开发目录为src二.代码规范 - 变量方 ...

  9. 【原创】为什么浮点数1e38f + 1 - 1e38f等于0

    1. 问题 为什么1e38f + 1 - 1e38f为0? 2. 分析 ; //00 00 00 02 int *pii = &ii; float i = 1e38f; //7e 96 76 ...

  10. 开源项目filepond的独立自由之路:城市套路深

    微信原文更清晰:https://mp.weixin.qq.com/s/dv39XvvDNlDqvSgrhN2f7A 最近一直在做一个有关独立开发者友链联盟的插件项目,在做到上传头像时,满网络找最好的头 ...