基于Numpy的神经网络+手写数字识别

本文代码来自Tariq Rashid所著《Python神经网络编程》

代码分为三个部分,框架如下所示:

# neural network class definition
class neuralNetwork: # initialise the neural network
def __init__():
pass # train the neural network
def train():
pass # query the neural network
def query():
pass

这是一个坚实的框架,可以在这个框架之上,充实神经网络工作的详细细节。

import numpy as np
import scipy.special
import matplotlib.pyplot as plt #neural network class definition
class neuralNetwork : #initialise the neural network
def __init__(self, inputNodes, hiddenNodes, outputNodes, learningrate) :
#set number of nodes in each input, hidden, output layer
self.inodes = inputNodes
self.hnodes = hiddenNodes
self.onodes = outputNodes #learning rate
self.lr = learningrate #link weight matrices, wih and who
self.wih = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
self.who = np.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes)) #activation function is the sigmoid function
self.activation_function = lambda x : scipy.special.expit(x)
pass # train the neural network
def train(self, inputs_list, targets_list):
#convert inputs_list, targets_list to 2d array
inputs = np.array(inputs_list, ndmin=2).T
targets = np.array(targets_list, ndmin=2).T #calculate signals into hidden layer
hidden_inputs = np.dot(self.wih, inputs)
#calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs) #calculate signals into final output layer
final_inputs = np.dot(self.who, hidden_outputs)
#calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs) #output layer error is the (target-actual)
output_errors = targets - final_outputs
#hidden layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = np.dot(self.who.T, output_errors) #update the weights for the links between the hidden and output layers
self.who += self.lr * np.dot((output_errors * final_outputs * (1.0 - final_outputs)), np.transpose(hidden_outputs))
#update the weights for the links between the input and hidden layers
self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(inputs)) pass # query the neural network
def query(self, inputs_list):
#convert inputs_list to 2d array
inputs = np.array(inputs_list, ndmin=2).T #calculate signals into hidden layer
hidden_inputs = np.dot(self.wih, inputs)
#calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs) #calculate signals into final output layer
final_inputs = np.dot(self.who, hidden_outputs)
#calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs) return final_outputs pass

使用以上定义的神经网络类:

#number of input,hidden and output nodes
input_nodes = 784
hidden_nodes = 200
output_nodes = 10 #learning rate is 0.1
learning_rate = 0.1 #create instance of neural network
n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate) #load the minist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", "r")
training_data_list = training_data_file.readlines()
training_data_file.close() #train the neural network #epochs is the number of times the training data set is used for training
epochs = 5 for e in range(epochs):
#go through all records in the training data set
for record in training_data_list:
#split the record by the "," commas
all_values = record.split(",")
#scale and shift the inputs
inputs = (np.asfarray(all_values[1:])/255.0*0.99) + 0.01
#create the target output values (all 0.01, except the desired label which is 0.99)
targets = np.zeros(output_nodes) + 0.01
#all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
pass
pass #load the minist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close() #test the neural network
#scorecard for how well the network performs, initially empty
scorecard = [] #go through all the records in the test data set
for record in test_data_list:
#split the record by the ',' commas
all_values = record.split(',')
#correct answer is the first value
correct_label = int(all_values[0])
#scale and shift the inputs
inputs = (np.asfarray(all_values[1:])/255.0*0.99) + 0.01
#query the network
outputs = n.query(inputs)
#the index of the highest value corresponds to the label
label = np.argmax(outputs)
#append correct or incorrect to list
if(label == correct_label):
#network's answer matches correct answer, add 1 to scorecard
scorecard.append(1)
else:
#network's answer doesn't matche correct answer, add 0 to scorecard
scorecard.append(0)
pass pass #calculate the performance score, the fraction of correct answers
scorecard_array = np.asarray(scorecard)
print("performance = ", scorecard_array.sum()/scorecard_array.size)

以上训练中所用到的数据集:

训练集

测试集

基于Numpy的神经网络+手写数字识别的更多相关文章

  1. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  2. 基于TensorFlow的MNIST手写数字识别-初级

    一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...

  3. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  4. TensorFlow 卷积神经网络手写数字识别数据集介绍

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...

  5. 深度学习-使用cuda加速卷积神经网络-手写数字识别准确率99.7%

    源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是9 ...

  6. 神经网络手写数字识别numpy实现

    本文摘自Michael Nielsen的Neural Network and Deep Learning,该书的github网址为:https://github.com/mnielsen/neural ...

  7. 深度学习(一):Python神经网络——手写数字识别

    声明:本文章为阅读书籍<Python神经网络编程>而来,代码与书中略有差异,书籍封面: 源码 若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x. 1 import ...

  8. 基于多层感知机的手写数字识别(Tensorflow实现)

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 基于TensorFlow的MNIST手写数字识别-深入

    构建多层卷积神经网络时需要多组W和偏移项b,我们封装2个方法来产生W和b 初级MNIST中用0初始化W和b,这里用噪声初始化进行对称打破,防止产生梯度0,同时用一个小的正值来初始化b避免dead ne ...

随机推荐

  1. 视图 v$sql,v$sqlarea,$sqltext,v$sqltext_with_newlines 的差异

    http://blog.csdn.net/leshami/article/details/8658205 视图v$sql,v$sqlarea,v$sqltext,v$sqltext_with_newl ...

  2. hdu 4770 状压+枚举

    /* 长记性了,以后对大数组初始化要注意了!140ms 原来是对vis数组进行每次初始化,每次初始化要200*200的复杂度 一直超时,发现没必要这样,直接标记点就行了,只需要一个15的数组用来标记, ...

  3. 前端开发:HTML

    静态页面: 没有与用户进行交互,而仅仅是用户浏览的一个网页 动态网页:就是用户不仅仅可以浏览网页,还可以与服务器交互 Web前端应用场景:公司官网(在PC通过浏览器访问公司网站).移动端网页(在手机上 ...

  4. CSU - 1115 最短的名字(字典树模板题)

    Description 在一个奇怪的村子中,很多人的名字都很长,比如aaaaa, bbb and abababab. 名字这么长,叫全名显然起来很不方便.所以村民之间一般只叫名字的前缀.比如叫'aaa ...

  5. 从零开始写STL-容器-list

    从零开始写STL-容器-list List 是STL 中的链表容器,今天我们将通过阅读和实现list源码来解决一下问题: List内部的内存结构是如何实现的? 为什么List的插入复杂度为O(1)? ...

  6. 2017-10-02-morning

    T1 一道图论神题(god) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图 ...

  7. Codeforces 803F(容斥原理)

    题意: 给n个正整数,求有多少个GCD为1的子序列.答案对1e9+7取模. 1<=n<=1e5,数字ai满足1<=ai<=1e5 分析: 设f(x)表示以x为公约数的子序列个数 ...

  8. Orcle定时生成表数据作业

    --建表 create table table41( id ) not null, --主键 col1 ), col2 ), col3 ), col4 int, col5 timestamp, col ...

  9. Java 代理模式和装饰者模式的区别

    装饰模式:以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案:代理模式:给一个对象提供一个代理对象,并有代理对象来控制对原有对象的引用: 装饰模式应该为所装饰的对象增强功能:代理模式对代理的 ...

  10. epoll 的accept , read, write

    http://www.ccvita.com/515.html 在一个非阻塞(fcntl)的socket上调用read/write函数, 返回EAGAIN或者EWOULDBLOCK(注: EAGAIN就 ...