【原创】Kafka Consumer多线程实例


| 优点 | 缺点 | |
| 方法1(每个线程维护一个KafkaConsumer) | 方便实现 速度较快,因为不需要任何线程间交互 易于维护分区内的消息顺序 |
更多的TCP连接开销(每个线程都要维护若干个TCP连接) consumer数受限于topic分区数,扩展性差 频繁请求导致吞吐量下降 线程自己处理消费到的消息可能会导致超时,从而造成rebalance |
| 方法2 (单个(或多个)consumer,多个worker线程) | 可独立扩展consumer数和worker数,伸缩性好 |
实现麻烦
通常难于维护分区内的消息顺序
处理链路变长,导致难以保证提交位移的语义正确性
|
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties; public class ConsumerRunnable implements Runnable { // 每个线程维护私有的KafkaConsumer实例
private final KafkaConsumer<String, String> consumer; public ConsumerRunnable(String brokerList, String groupId, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true"); //本例使用自动提交位移
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
this.consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic)); // 本例使用分区副本自动分配策略
} @Override
public void run() {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(200); // 本例使用200ms作为获取超时时间
for (ConsumerRecord<String, String> record : records) {
// 这里面写处理消息的逻辑,本例中只是简单地打印消息
System.out.println(Thread.currentThread().getName() + " consumed " + record.partition() +
"th message with offset: " + record.offset());
}
}
}
}
ConsumerGroup类
package com.my.kafka.test; import java.util.ArrayList;
import java.util.List; public class ConsumerGroup { private List<ConsumerRunnable> consumers; public ConsumerGroup(int consumerNum, String groupId, String topic, String brokerList) {
consumers = new ArrayList<>(consumerNum);
for (int i = 0; i < consumerNum; ++i) {
ConsumerRunnable consumerThread = new ConsumerRunnable(brokerList, groupId, topic);
consumers.add(consumerThread);
}
} public void execute() {
for (ConsumerRunnable task : consumers) {
new Thread(task).start();
}
}
}
ConsumerMain类
public class ConsumerMain {
public static void main(String[] args) {
String brokerList = "localhost:9092";
String groupId = "testGroup1";
String topic = "test-topic";
int consumerNum = 3;
ConsumerGroup consumerGroup = new ConsumerGroup(consumerNum, groupId, topic, brokerList);
consumerGroup.execute();
}
}
方法2
import org.apache.kafka.clients.consumer.ConsumerRecord;
public class Worker implements Runnable {
private ConsumerRecord<String, String> consumerRecord;
public Worker(ConsumerRecord record) {
this.consumerRecord = record;
}
@Override
public void run() {
// 这里写你的消息处理逻辑,本例中只是简单地打印消息
System.out.println(Thread.currentThread().getName() + " consumed " + consumerRecord.partition()
+ "th message with offset: " + consumerRecord.offset());
}
}
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit; public class ConsumerHandler { // 本例中使用一个consumer将消息放入后端队列,你当然可以使用前一种方法中的多实例按照某张规则同时把消息放入后端队列
private final KafkaConsumer<String, String> consumer;
private ExecutorService executors; public ConsumerHandler(String brokerList, String groupId, String topic) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic));
} public void execute(int workerNum) {
executors = new ThreadPoolExecutor(workerNum, workerNum, 0L, TimeUnit.MILLISECONDS,
new ArrayBlockingQueue<>(1000), new ThreadPoolExecutor.CallerRunsPolicy()); while (true) {
ConsumerRecords<String, String> records = consumer.poll(200);
for (final ConsumerRecord record : records) {
executors.submit(new Worker(record));
}
}
} public void shutdown() {
if (consumer != null) {
consumer.close();
}
if (executors != null) {
executors.shutdown();
}
try {
if (!executors.awaitTermination(10, TimeUnit.SECONDS)) {
System.out.println("Timeout.... Ignore for this case");
}
} catch (InterruptedException ignored) {
System.out.println("Other thread interrupted this shutdown, ignore for this case.");
Thread.currentThread().interrupt();
}
} }
public class Main {
public static void main(String[] args) {
String brokerList = "localhost:9092,localhost:9093,localhost:9094";
String groupId = "group2";
String topic = "test-topic";
int workerNum = 5;
ConsumerHandler consumers = new ConsumerHandler(brokerList, groupId, topic);
consumers.execute(workerNum);
try {
Thread.sleep(1000000);
} catch (InterruptedException ignored) {}
consumers.shutdown();
}
}
总结一下,这两种方法或是模型都有各自的优缺点,在具体使用时需要根据自己实际的业务特点来选取对应的方法。就我个人而言,我比较推崇第二种方法以及背后的思想,即不要将很重的处理逻辑放入消费者的代码中,很多Kafka consumer使用者碰到的各种rebalance超时、coordinator重新选举、心跳无法维持等问题都来源于此。
【原创】Kafka Consumer多线程实例的更多相关文章
- 【原创】Kafka Consumer多线程实例续篇
在上一篇<Kafka Consumer多线程实例>中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程.在第二种 ...
- kafka系列 -- 多线程消费者实现
看了一下kafka,然后写了消费Kafka数据的代码.感觉自己功力还是不够. 不能随心所欲地操作数据,数据结构没学好,spark的RDD操作没学好. 不能很好地组织代码结构,设计模式没学好,面向对象思 ...
- 【原创】kafka consumer源代码分析
顾名思义,就是kafka的consumer api包. 一.ConsumerConfig.scala Kafka consumer的配置类,除了一些默认值常量及验证参数的方法之外,就是consumer ...
- 【原创】美团二面:聊聊你对 Kafka Consumer 的架构设计
在上一篇中我们详细聊了关于 Kafka Producer 内部的底层原理设计思想和细节, 本篇我们主要来聊聊 Kafka Consumer 即消费者的内部底层原理设计思想. 1.Consumer之总体 ...
- kafka consumer assign 和 subscribe模式差异分析
转载请注明原创地址:http://www.cnblogs.com/dongxiao-yang/p/7200971.html 最近需要研究flink-connector-kafka的消费行为,发现fli ...
- Kafka设计解析(四)- Kafka Consumer设计解析
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/08/09/KafkaColumn4 摘要 本文主要介绍了Kafka High Level Con ...
- 读Kafka Consumer源码
最近一直在关注阿里的一个开源项目:OpenMessaging OpenMessaging, which includes the establishment of industry guideline ...
- kafka consumer 配置详解
1.Consumer Group 与 topic 订阅 每个Consumer 进程都会划归到一个逻辑的Consumer Group中,逻辑的订阅者是Consumer Group.所以一条message ...
- [Big Data - Kafka] Kafka设计解析(四):Kafka Consumer解析
High Level Consumer 很多时候,客户程序只是希望从Kafka读取数据,不太关心消息offset的处理.同时也希望提供一些语义,例如同一条消息只被某一个Consumer消费(单播)或被 ...
随机推荐
- 《LoadRunner12七天速成宝典》签售会2016-12-17北京
报名地址: http://www.after615.com/actives/s?id=3141&time=1480042829608&sign=9ac8e25e9ab3cf57f613 ...
- 代码的坏味道(14)——重复代码(Duplicate Code)
坏味道--重复代码(Duplicate Code) 重复代码堪称为代码坏味道之首.消除重复代码总是有利无害的. 特征 两个代码片段看上去几乎一样. 问题原因 重复代码通常发生在多个程序员同时在同一程序 ...
- Struts2入门(六)——国际化
一.前言 1.1.国际化简介 国际化是指应用程序在运行的时候,根据客户端请求来自的国家地区.语言的不同而显示不同的界面(简单说就是根据你的地区显示相关地区的语言,如果你现在在英国,那么显示的语言就是英 ...
- ABAP实现屏幕自己刷新和跳转功能
ABAP开发工程中,有时候需要让跳转出的屏幕自动实现跳转和刷新的功能,该功能的实现需要在屏幕PBO 里面调用相应的事件执行. 关键代码为: SET TITLEBAR ' 屏幕自动程序'. IF g_c ...
- POJ1149 PIGS [最大流 建图]
PIGS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20662 Accepted: 9435 Description ...
- C#编写windows服务,多服务为什么只启动一个(ServiceBase.Run)
https://zhidao.baidu.com/question/380395667.html //多服务一个宿主程序时必须注间以下要点: Service1的ServiceName 必须 Insta ...
- 腾讯云 安装mono
一.yum -y update 运行出现以下错误: http://centos.tencentyun.com/contrib/x86_64/repodata/filelists.xml.gz: [Er ...
- X Window 的奥秘
大名鼎鼎的 X Window 大家肯定不陌生.都知道它是 Unix/Linux 下面的窗口系统,也都知道它基于 Server/Clinet 架构.在网上随便搜一搜,也可以找到不少 X Window 的 ...
- CATransition自定义转场动画
我们可以通过CATransiton来自定义一些漂亮的转场动画, CATransition继承自CAAnimation, 所以用法跟CAAnimation差不多 先直接上一个代码: #import &q ...
- Spark 生态系统组件
摘要: 随着大数据技术的发展,实时流计算.机器学习.图计算等领域成为较热的研究方向,而Spark作为大数据处理的“利器”有着较为成熟的生态圈,能够一站式解决类似场景的问题.那你知道Spark生态系统有 ...