变量说明

  • x,y,hue 数据集变量 变量名
  • date 数据集 数据集名
  • row,col 更多分类变量进行平铺显示 变量名
  • col_wrap 每行的最高平铺数 整数
  • estimator 在每个分类中进行矢量到标量的映射 矢量
  • ci 置信区间 浮点数或None
  • n_boot 计算置信区间时使用的引导迭代次数 整数
  • units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据
  • order, hue_order 对应排序列表 字符串列表
  • row_order, col_order 对应排序列表 字符串列表
  • kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 "v"/"h" color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False

直方图

x = np.random.normal(size=100)
sns.distplot(x,kde=False)
#sns.distplot(x, bins=20, kde=False)

柱状图

sns.barplot(x="sex", y="survived", hue="class", data=titanic);

观测两个变量之间的分布关系最好用散点图

sns.jointplot(x="x", y="y", data=df);

# 根据均值和协方差生成数据
mean, cov = [0, 1], [(1, .5), (.5, 1)]
x, y = np.random.multivariate_normal(mean, cov, 1000).T
# 绘制散点图
with sns.axes_style("white"):
sns.jointplot(x=x, y=y, kind="hex", color="k")

iris = sns.load_dataset("iris")
sns.pairplot(iris)

箱线图

sns.set_style("whitegrid")
data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
sns.boxplot(data=data)

sns.violinplot(x="total_bill", y="day", hue="time", data=tips);

regplot()和lmplot()都可以绘制回归关系,推荐regplot()

sns.regplot(x="total_bill", y="tip", data=tips)
sns.lmplot(x="total_bill", y="tip", data=tips);

sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)

sns.swarmplot(x="day", y="total_bill", hue="sex",data=tips)

sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)

g = sns.FacetGrid(tips, col="time")
g.map(plt.hist, "tip");

g = sns.FacetGrid(tips, col="sex", hue="smoker")
g.map(plt.scatter, "total_bill", "tip", alpha=.7)
g.add_legend();

特征之间的相关性

plt.subplots(figsize=(16,9))
correlation_mat = train[cont_features].corr()
sns.heatmap(correlation_mat, annot=True)

可视化---seaborn的更多相关文章

  1. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  2. 数据可视化 seaborn绘图(2)

    统计关系可视化 最常用的关系可视化的函数是relplot seaborn.relplot(x=None, y=None, hue=None, size=None, style=None, data=N ...

  3. 数据可视化 seaborn绘图(1)

    seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...

  4. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

  5. Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)

    1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...

  6. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  7. Python 绘图与可视化 seaborn

    Seaborn是一个基于matplotlib的Python数据可视化库.它提供了一个高级界面,用于绘制有吸引力且信息丰富的统计图形. 主页:http://seaborn.pydata.org/ 官方教 ...

  8. 图表可视化seaborn风格和调色盘

    seaborn是基于matplotlib的python数据可视化库,提供更高层次的API封装,包括一些高级图表可视化等工具. 使用seaborn需要先安装改模块pip3 install seaborn ...

  9. Python图表数据可视化Seaborn:4. 结构化图表可视化

    1.基本设置 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ...

  10. Python数据可视化-seaborn

    详细介绍可以看seaborn官方API和example galler. 1  set_style( )  set( ) set_style( )是用来设置主题的,Seaborn有五个预设好的主题: d ...

随机推荐

  1. 【转载】WebDriver拾级而上·之零 WebDriver理论

    Selenium2.0 = Selenium1.0 + WebDriver(也就是说Selenium2.0合并了这两个项目)   Selenium1.0可以使用任何编程语言,但是有个先决条件就是必须支 ...

  2. SMPL模型Shape和Pose参数

    两部分 1.Pose参数 2.Shape参数 一 Pose参数 共24个关节点,对应idx从0到23,图中3个小图分别表示zero shape只有idx节点分别绕x/y/z轴旋转. 其中蓝色线表示-p ...

  3. 51nod 1201:整数划分 超级好的DP题目

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} { ...

  4. POJ 2593&&2479:Max Sequence

    Max Sequence Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16329   Accepted: 6848 Des ...

  5. java课程课后作业190606之计算最长英语单词链

    一个文本文件中有N 个不同的英语单词, 我们能否写一个程序,快速找出最长的能首尾相连的英语单词链,每个单词最多只能用一次.最长的定义是:最多单词数量,和单词中字母的数量无关. 统一输入文件名称:inp ...

  6. .NET CORE AutoMapper使用

    1.通过nuget安装AutoMapper,版本是7.0.1, 安装AutoMapper.Extensions.Microsoft.DependencyInjection  版本是4.0.1 不是以上 ...

  7. 文献阅读 - MonoLoco与关于Camera Matrix的笔记

    目录 概览 HighLights Camera Intrinsic Matrix 笔记 Intrinsic Matrix Task-Error - 不确定性任务下确界的计算 输出假设的Laplace分 ...

  8. 多源D点(邻接表+bfs)

    [问题]给出一颗n个结点的树,树上每条边的边权都是1,这n个结点中有m个特殊点,请你求出树上距离这m个特殊点距离均不超过d的点的数量,包含特殊点本身. 输入: 输入第一行包含三个正整数,n.m.d分别 ...

  9. APP测试关注的点 - 笔记

    来源公开课笔记!!! 1.黑盒测试 是否正确并如设计的一样正常运行.测试自动化回归测试 2.测试主要关注参数: CPU.内存.耗电量.流量.FRS(流畅度).同时关注APP安装耗时和启动耗时 3.适配 ...

  10. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...