可视化---seaborn
变量说明
- x,y,hue 数据集变量 变量名
- date 数据集 数据集名
- row,col 更多分类变量进行平铺显示 变量名
- col_wrap 每行的最高平铺数 整数
- estimator 在每个分类中进行矢量到标量的映射 矢量
- ci 置信区间 浮点数或None
- n_boot 计算置信区间时使用的引导迭代次数 整数
- units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据
- order, hue_order 对应排序列表 字符串列表
- row_order, col_order 对应排序列表 字符串列表
- kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 "v"/"h" color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False
直方图
x = np.random.normal(size=100)
sns.distplot(x,kde=False)
#sns.distplot(x, bins=20, kde=False)


柱状图
sns.barplot(x="sex", y="survived", hue="class", data=titanic);

观测两个变量之间的分布关系最好用散点图
sns.jointplot(x="x", y="y", data=df);

# 根据均值和协方差生成数据
mean, cov = [0, 1], [(1, .5), (.5, 1)]
x, y = np.random.multivariate_normal(mean, cov, 1000).T
# 绘制散点图
with sns.axes_style("white"):
sns.jointplot(x=x, y=y, kind="hex", color="k")

iris = sns.load_dataset("iris")
sns.pairplot(iris)

箱线图
sns.set_style("whitegrid")
data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
sns.boxplot(data=data)

sns.violinplot(x="total_bill", y="day", hue="time", data=tips);

regplot()和lmplot()都可以绘制回归关系,推荐regplot()
sns.regplot(x="total_bill", y="tip", data=tips)
sns.lmplot(x="total_bill", y="tip", data=tips);


sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)

sns.swarmplot(x="day", y="total_bill", hue="sex",data=tips)

sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)

g = sns.FacetGrid(tips, col="time")
g.map(plt.hist, "tip");

g = sns.FacetGrid(tips, col="sex", hue="smoker")
g.map(plt.scatter, "total_bill", "tip", alpha=.7)
g.add_legend();

特征之间的相关性
plt.subplots(figsize=(16,9))
correlation_mat = train[cont_features].corr()
sns.heatmap(correlation_mat, annot=True)

可视化---seaborn的更多相关文章
- Python数据可视化-seaborn库之countplot
在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...
- 数据可视化 seaborn绘图(2)
统计关系可视化 最常用的关系可视化的函数是relplot seaborn.relplot(x=None, y=None, hue=None, size=None, style=None, data=N ...
- 数据可视化 seaborn绘图(1)
seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...
- Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图
1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...
- Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)
1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...
- Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图
conda install seaborn 是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...
- Python 绘图与可视化 seaborn
Seaborn是一个基于matplotlib的Python数据可视化库.它提供了一个高级界面,用于绘制有吸引力且信息丰富的统计图形. 主页:http://seaborn.pydata.org/ 官方教 ...
- 图表可视化seaborn风格和调色盘
seaborn是基于matplotlib的python数据可视化库,提供更高层次的API封装,包括一些高级图表可视化等工具. 使用seaborn需要先安装改模块pip3 install seaborn ...
- Python图表数据可视化Seaborn:4. 结构化图表可视化
1.基本设置 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ...
- Python数据可视化-seaborn
详细介绍可以看seaborn官方API和example galler. 1 set_style( ) set( ) set_style( )是用来设置主题的,Seaborn有五个预设好的主题: d ...
随机推荐
- Bean 注解(Annotation)配置(3)- 依赖注入配置
Spring 系列教程 Spring 框架介绍 Spring 框架模块 Spring开发环境搭建(Eclipse) 创建一个简单的Spring应用 Spring 控制反转容器(Inversion of ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest
E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...
- Java的优先队列PriorityQueue详解
一.优先队列概述 优先队列PriorityQueue是Queue接口的实现,可以对其中元素进行排序, 可以放基本数据类型的包装类(如:Integer,Long等)或自定义的类 对于基本数据类型的包装器 ...
- P 1021 个位数统计
转跳点:
- Android 为控件添加点击涟漪效果
Android在5.0版为Button默认添加了点击时的涟漪效果,而且在其他的控件上也可以轻松的实现这种炫酷的效果.涟漪效果可以分为两种,一种时有边界的涟漪,另一种时无边界的涟漪.所谓的有边界,即涟漪 ...
- POJ 1320:Street Numbers
Street Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2753 Accepted: 1530 De ...
- centos7+nginx+php+mysql环境搭建
一:CentOS7安装 在VMware 新建一个虚拟机CentOS 64位,配置好磁盘大小为30G,内存2G,启动虚拟机进入CentOS安装界面 选择Install CentOS 7 SOFTWARE ...
- 利用京东云Serverless服务快速构建5G时代的IoT应用
10月31日,在2019年中国国际信息通信展览会上,工信部宣布:5G商用正式启动.5G商用时代来了! 5G的商用,使得数据传输速度.响应速度.连接数据.数据传输量.传输可靠性等方面都有了显著的提升,这 ...
- 吴裕雄--天生自然Django框架开发笔记:Django 表单
HTML表单是网站交互性的经典方式. 用Django对用户提交的表单数据进行处理. HTTP 请求 HTTP协议以"请求-回复"的方式工作.客户发送请求时,可以在请求中附加数据.服 ...
- day23(023-递归练习)
23.01_File类递归练习(统计该文件夹大小) * 需求:1,从键盘接收一个文件夹路径,统计该文件夹大小(字节?) * * 从键盘接收一个文件夹路径 * 1,创建键盘录入对象 * 2,定义一个无限 ...